非容器应用与K8s工作负载的服务网格化实践-4 基于ASM的POD和VM互访实践-GRPC协议篇

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 为了实现高可用,非容器应用通常有一套服务注册和发现的机制。相对而言,kubernetes容器服务为POD提供了统一的基于dns的注册和发现机制。对于http协议的非容器应用的迁移,因为都是基于dns机制,切换成本交底。而对于使用非http协议的非容器应用,服务注册和发现这个技术点为迁移带来了额外的困难。如何从非容器的注册和发现大脑最终迁移到kubernetes的注册和发现大脑,目前尚没有广泛认可的方案。目前常见的讨论是双脑方案,就是让非容器应用在启动时同时向两套大脑注册,并从两套中发现依赖服务,然后逐步实现向kubernetes大脑过度。这套方案的优点是可以通过随时摆动来保证可用性。

为了实现高可用,非容器应用通常有一套服务注册和发现的机制。相对而言,kubernetes容器服务为POD提供了统一的基于dns的注册和发现机制。对于http协议的非容器应用的迁移,因为都是基于dns机制,切换成本交底。而对于使用非http协议的非容器应用,服务注册和发现这个技术点为迁移带来了额外的困难。

如何从非容器的注册和发现大脑最终迁移到kubernetes的注册和发现大脑,目前尚没有广泛认可的方案。目前常见的讨论是双脑方案,就是让非容器应用在启动时同时向两套大脑注册,并从两套中发现依赖服务,然后逐步实现向kubernetes大脑过度。这套方案的优点是可以通过随时摆动来保证可用性。

我个人比较倾向于彻底的kubernetes一脑模式。相比多脑,一脑的复杂度会极大下降。遗留大脑集群保持现状,kubernetes大脑集群使用新的方案。这样可以将服务发现和网格化解耦为两个独立的问题。借助服务网格的蓝绿部署/流量转移,可以将验证完毕依赖关系的集群逐步放行并最终替换遗留大脑集群。这个方案最有挑战的地方是如何在不改变非容器应用代码的前提下,将其底层协议替换。如果可以替换为grpc,那么就可以按照本篇的实践实现网格化。目前这个想法还很不成熟,期待交流。

1 POD和VM互访

路由规则

服务网格的流量转移是一脑方案的核心。首先需要明确的是,网格化的服务链路都会经过sidecar,sidecar内部(envoy)实现了对grpc的负载均衡,grpc协议的上游服务通过长链接和下游服务各个节点保持连接,在不配置流量转移的情况下,上游请求会均匀地路由到下游各个节点。

与http协议通过path配置流量转移类似,grpc的配置是通过service/method或者service.method来定义匹配规则的。grpc的路由配置示意如下。

spec:
  hosts:
    - hello2-svc
  http:
    - name: grpc-hello-route
      match:
        - uri:
            prefix: /org.feuyeux.grpc.Greeter/SayHello
      route:
        - destination:
            host: hello2-svc
            subset: v1
          weight: 30
        - destination:
            host: hello2-svc
            subset: v2
          weight: 60
        - destination:
            host: hello2-svc
            subset: v3
          weight: 10

搭建实验环境

本篇示例实验与前一篇相仿,不再冗述重复部分。我们希望路由到hello2 en/fr/es的流量比例为:30%:60%:10%。

示例(grpc_reciprocal_demo)包含如下元素:

  • hello1 deployment(镜像grpc_springboot_v1)
  • hello3 deployment(镜像grpc_springboot_v1)
  • hello2 docker containers(镜像grpc_springboot_v1/grpc_springboot_v2/grpc_springboot_v3)
  • 入口网关:istio-ingressgateway
  • 入口流量配置:gateway/virtualservice
  • hello1流量配置:hello1 service
  • hello2流量配置:hello2 service/hello2 virtualservice/hello2 destinationrule
  • hello3流量配置:hello3 service
  • hello2 serviceentry/hello2 workloadentry

与前一篇http所用示例类似,grpc示例使用的镜像为grpc_springboot-{version},是一个基于springboot开发的grpc服务(源代码在这里)。每个实例可以通过环境变量GRPC_HELLO_BACKEND定义下游服务。

启动hello2应用

通过如下命令分别在3个ecs节点上启动hello2的 docker container

#ssh1.sh
docker run \
--rm \
--network host \
--name http_v1 \
-e GRPC_HELLO_BACKEND=hello3-svc.grpc-reciprocal-hello.svc.cluster.local \
registry.cn-beijing.aliyuncs.com/asm_repo/grpc_springboot_v1:1.0.0
#ssh2.sh
docker run \
--rm \
--network host \
--name http_v2 \
-e GRPC_HELLO_BACKEND=hello3-svc.grpc-reciprocal-hello.svc.cluster.local \
registry.cn-beijing.aliyuncs.com/asm_repo/grpc_springboot_v2:1.0.0
#ssh3.sh
docker run \
--rm \
--network host \
--name http_v3 \
-e GRPC_HELLO_BACKEND=hello3-svc.grpc-reciprocal-hello.svc.cluster.local \
registry.cn-beijing.aliyuncs.com/asm_repo/grpc_springboot_v3:1.0.0

其他部分的搭建与前篇类似,可以参考前篇和本篇示例脚本,余文不在冗述。

grpcurl

相对于http的验证工具curl,我们使用grpcurl对grpc服务进行验证。

当grpc服务提供反射protocolbuf能力时,可以使用如下命令进行请求验证:

k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello \
  -- grpcurl -plaintext -d '{"name":"eric"}' \
  hello3-svc.grpc-reciprocal-hello.svc.cluster.local:7001 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply'
  
Hello eric(172.18.1.10)

如果上述命令返回错误,说明grpc服务无法反射protocolbuf,需要在执行grpccurl时,通过-import-path-proto参数提供proto文件。示意如下。

k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello -- \
grpcurl -plaintext -d '{"name":"eric"}' \
-import-path /opt -proto hello.proto \
hello3-svc.grpc-reciprocal-hello.svc.cluster.local:7001 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply'

Hello eric(172.18.1.10)

KUBE验证-POD和VM互访

初步掌握grpccurl命令后,我们验证基于grpc协议的POD和VM互访。请求从hello1 POD发向hello2 service,然后路由到各VM中的hello2 app,再由hello2 app请求到hello3 POD。

for i in {1..6}; do
  k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello \
    -- grpcurl -plaintext -d '{"name":"eric"}' localhost:7001 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply'
done
Hello eric(172.18.1.11)<-Hola eric(192.168.0.172)<-Hello eric(172.18.1.10)
Hello eric(172.18.1.11)<-Bonjour eric(192.168.0.171)<-Hello eric(172.18.1.10)
Hello eric(172.18.1.11)<-Hello eric(192.168.0.170)<-Hello eric(172.18.1.10)
...

MESH验证-全链路流量转移

最后部署gateway/virtualservice/destinationrule进行端到端验证。

IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

for i in {1..100}; do
  resp=$(grpcurl -plaintext -d '{"name":"eric"}' "$IP":7004 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply')
  echo "$resp" >>test_traffic_shift_result
done

echo "expected 30%(Hello eric)-60%(Bonjour eric)-10%(Hola eric):"
sort test_traffic_shift_result | grep -v "^[[:space:]]*$"| uniq -c | sort -nrk1
  57 Hello eric(172.18.1.11)<-Bonjour eric(192.168.0.171)<-Hello eric(172.18.1.10)
  32 Hello eric(172.18.1.11)<-Hello eric(192.168.0.170)<-Hello eric(172.18.1.10)
  11 Hello eric(172.18.1.11)<-Hola eric(192.168.0.172)<-Hello eric(172.18.1.10)

2 grpc基准测试

ghz

ghz是grpc协议的基准测试工具,功能与http协议下的apache benchfortio类似。我们可以通过ghz对服务网格内的grpc服务进行测试和调参。ghz的基本用法示意如下。

hello1_pod=$(k get pod -l app=hello1-deploy -n grpc-reciprocal-hello -o jsonpath={.items..metadata.name})

k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello -- \
  ghz --insecure -d '{"name":"eric"}' \
  --proto /opt/hello.proto \
  --call org.feuyeux.grpc.Greeter/SayHello \
  -n 2000 \
  -c 20 \
  -q 500 \
  localhost:7001
  • -n参数用来指定请求数量
  • -c参数用来指定并发数量
  • -q参数用来指定QPS

测试结果示意如下。

Summary:
  Count:        2000
  Total:        5.60 s
  Slowest:      851.86 ms
  Fastest:      4.88 ms
  Average:      54.51 ms
  Requests/sec: 357.21

Response time histogram:
  4.883 [1]     |
  89.580 [1919] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  174.278 [43]  |∎
  258.976 [3]   |
  343.673 [5]   |
  428.371 [2]   |
  513.068 [4]   |
  597.766 [3]   |
  682.464 [0]   |
  767.161 [7]   |
  851.859 [13]  |

Latency distribution:
  10 % in 24.37 ms 
  25 % in 31.71 ms 
  50 % in 41.98 ms 
  75 % in 53.87 ms 
  90 % in 70.67 ms 
  95 % in 83.83 ms 
  99 % in 683.16 ms 

Status code distribution:
  [OK]   2000 responses   

上述结果表示RT/latency基本(1919/2000)落在90ms以内,平均54.51 ms,95%的请求延迟在83.83 ms以内,99 %段的延迟在683.16 ms,存在长尾,需要进一步优化服务网格的配置以及服务源代码。

trafficPolicy

通过修改hello2的DestinationRule可以随时调整连接池配置。我们可以结合基准测试,不断调整配置找到最佳性能点。示意如下。

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: hello2-dr
  namespace: grpc-reciprocal-hello
spec:
  host: hello2-svc
  subsets:
    - labels:
        version: v1
      name: v1
    - labels:
        version: v2
      name: v2
    - labels:
        version: v3
      name: v3
  trafficPolicy:
    connectionPool:
      http:
        http1MaxPendingRequests: 20
        http2MaxRequests: 100
        maxRequestsPerConnection: 10
        maxRetries: 1
      tcp:
        connectTimeout: 10s
        maxConnections: 10

到此,POD和VM互访的grpc协议流量管理讲述完毕。

本篇示例完整演示了非容器应用网格化过程中的一个比较经典的场景。覆盖到从istio-ingressgateway到deployment、workloadentry等各种CRD的配置,较完整地展示了POD和VM互访中遇到的各技术点的配置。

接下来,我们在此基础上,验证下POD和VM作为同一service的混合流量,如何实现流量转移。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
29天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
117 21
|
1月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
2月前
|
存储 人工智能 调度
容器服务:智算时代云原生操作系统及月之暗面Kimi、深势科技实践分享
容器技术已经发展成为云计算操作系统的关键组成部分,向下高效调度多样化异构算力,向上提供统一编程接口,支持多样化工作负载。阿里云容器服务在2024年巴黎奥运会中提供了稳定高效的云上支持,实现了子弹时间特效等创新应用。此外,容器技术还带来了弹性、普惠的计算能力升级,如每分钟创建1万Pod和秒级CPU资源热变配,以及针对大数据与AI应用的弹性临时盘和跨可用区云盘等高性能存储解决方案。智能运维方面,推出了即时弹性节点池、智能应用弹性策略和可信赖集群托管运维等功能,进一步简化了集群管理和优化了资源利用率。
|
2月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
2月前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
2月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。
|
2月前
|
存储 Prometheus 监控
Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行
本文深入探讨了在Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行。
87 5
|
1月前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
2月前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
148 12
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。

相关产品

  • 容器服务Kubernetes版