连载7:阿里巴巴大数据实践:OneData模型实施介绍

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
可视分析地图(DataV-Atlas),3 个项目,100M 存储空间
数据可视化DataV,5个大屏 1个月
简介: 如何从具体的需求或项目转换为可实施的解决方案,如何进行需求分析、架构设计、详细模型设计等,则是模型实施过程中讨论的内容。

前言:
-更多关于数智化转型、数据中台内容请加入阿里云数据中台交流群—数智俱乐部 和关注官方微信公总号(文末扫描二维码或点此加入

-阿里云数据中台官网 https://dp.alibaba.com/index

来源:数智化转型俱乐部

如何从具体的需求或项目转换为可实施的解决方案,如何进行需求分析、架构设计、详细模型设计等,则是模型实施过程中讨论的内容。本节先简单介绍业界常用的模型实施过程,然后重点讲解阿里巴巴OneData模型设计理论及实施过程。

1.业界常用的模型实施过程

**Kimball模型实施过程
**
Kimball维度建模主要探讨需求分析、高层模型、详细模型和模型审查整个过程。

构建维度模型一般要经历三个阶段:第一个阶段是高层设计时期,定义业务过程维度模型的范围,提供每种星形模式的技术和功能描述;第二个阶段是详细模型设计时期,对每个星形模型添加属性和度量信息;第三个阶段是进行模型的审查、再设计和验证等工作,第四个阶段是产生详细设计文档,提交ETL设计和开发。

高层模型:高层模型设计阶段的直接产出目标是创建高层维度模型图,它是对业务过程中的维表和事实表的图形描述。确定维表创建初始属性列表,为每个事实表创建提议度量。

详细模型:详细的维度建模过程是为高层模型填补缺失的信息,解决设计问题,并不断测试模型能否满足业务需求,确保模型的完备性。确定每个维表的属性和每个事实表的度量,并确定信息来源的位置、定义,确定属性和度量如何填入模型的初步业务规则。

模型审查、再设计和验证:本阶段主要召集相关人员进行模型的审查和验证,根据审查结果对详细维度进行再设计。

提交ETL设计和开发:最后,完成模型详细设计文档,提交ETL开发人员,进入ETL设计和开发阶段,由ETL人员完成物理模型的设计和开发。

上述内容主要引用自Ralph Kimball等的The Data Warehouse Lifecycle Toolkit,具体细节请参考原著作。

Inmon模型实施过程

Inmon对数据模型的定位是:扮演着通往数据仓库其他部分的智能路线图的角色。由于数据仓库的建设不是一蹴而就的,为了协调不同人员的工作以及适应不同类型的用户,非常有必要建立一个路线图——数据模型,描述数据仓库各部分是如何结合在一起的。

Inmon将模型划分为三个层次,分别是ERD(Entity Relationship Diagram,实体关系图)层、DIS(Data Item Set,数据项集)层和物理层(Physical Model,物理模型)。

ERD层是数据模型的最高层,该层描述了公司业务中的实体或主题域以及它们之间的关系;DIS层是中间层,该层描述了数据模型中的关键字、属性以及细节数据之间的关系;物理层是数据建模的最底层,该层描述了数据模型的物理特性。

Inmon对于构建数据仓库模型建议采用螺旋式开发方法,采用迭代方式完成多次需求。但需要采用统一的ERD模型,才能够将每次迭代的结果整合在一起。ERD模型是高度抽象的数据模型,描述了企业完整的数据。而每次迭代则是完成ERD模型的子集,通过DIS和物理数据模型实现。

上述内容主要引用自Inmon的Building the Data Warehouse,具体细节请参考原著作。

其他模型实施过程

在实践中经常会用到如下数据仓库模型层次的划分,和Kimball、Inmon的模型实施理论有一定的相通性,但不涉及具体的模型表达。

业务建模,生成业务模型,主要解决业务层面的分解和程序化。

领域建模,生成领域模型,主要是对业务模型进行抽象处理,生成领域概念模型。

逻辑建模,生成逻辑模型,主要是将领域模型的概念实体以及实体之间的关系进行数据库层次的逻辑化。

物理建模,生成物理模型,主要解决逻辑模型针对不同关系数据库的物理化以及性能等一些具体的技术问题。

2.OneData实施过程

本节重点讲解怎么使用OneData这套体系和相配套的工具实施大数据系统的模型建设,在讲解中会以阿里巴巴的具体业务进行说明。

指导方针

首先,在建设大数据数据仓库时,要进行充分的业务调研和需求分析。这是数据仓库建设的基石,业务调研和需求分析做得是否充分直接决定了数据仓库建设是否成功。其次,进行数据总体架构设计,主要是根据数据域对数据进行划分;按照维度建模理论,构建总线矩阵、抽象出业务过程和维度。再次,对报表需求进行抽象整理出相关指标体系,使用OneData工具完成指标规范定义和模型设计。最后,就是代码研发和运维。本文将会重点讲解物理模型设计之前(含)步骤的内容。

实施工作流

数据调研——业务调研:整个阿里集团涉及的业务涵盖电商、数字娱乐、导航(高德)、移动互联网服务等领域。各个领域又涵盖多个业务线,如电商领域就涵盖了C类(淘宝、天猫、天猫国际)与B类(阿里巴巴中文站、国际站、速卖通)业务。数据仓库是要涵盖所有业务领域,还是各个业务领域独自建设,业务领域内的业务线也同样面临着这个问题。所以要构建大数据数据仓库,就需要了解各个业务领域、业务线的业务有什么共同点和不同点,以及各个业务线可以细分为哪几个业务模块,每个业务模块具体的业务流程又是怎样的。业务调研是否充分,将会直接决定数据仓库建设是否成功。

在阿里巴巴,一般各个业务领域独自建设数据仓库,业务领域内的业务线由于业务相似、业务相关性较大,进行统一集中建设。

数据调研——需求调研:可以想象一下,在没有考虑分析师、业务运营人员的数据需求的情况下,根据业务调研建设的数据仓库无疑等于闭门造车。了解了业务系统的业务后并不代表就可以进行实施了,此刻要做的就是收集数据使用者的需求,可以去找分析师、业务运营人员了解他们有什么数据诉求,此时更多的就是报表需求。

需求调研的途径有两种:一是根据与分析师、业务运营人员的沟通(邮件、IM)获知需求;二是对报表系统中现有的报表进行研究分析。通过需求调研分析后,就清楚数据要做成什么样的。很多时候,都是由具体的数据需求驱动数据仓库团队去了解业务系统的业务数据,这两者并没有严格的先后顺序。

举例:分析师需要了解大淘宝(淘宝、天猫、天猫国际)一级类目的成交金额。当获知这个需求后,我们要分析根据什么(维度)汇总,以及汇总什么(度量),这里类目是维度,金额是度量;明细数据和汇总数据应该怎样设计?这是一个公用的报表吗?是需要沉淀到汇总表里面,还是在报表工具中进行汇总?
架构设计——数据域划分:数据域是指面向业务分析,将业务过程或者维度进行抽象的集合。业务过程可以概括为一个个不可拆分的行为事件,如下单、支付、退款。为保障整个体系的生命力,数据域需要抽象提炼,并且长期维护和更新,但不轻易变动。在划分数据域时,既能涵盖当前所有的业务需求,又能在新业务进入时无影响地被包含进已有的数据域中或者扩展新的数据域。

架构设计——构建总线矩阵:在进行充分的业务调研和需求调研后,就要构建总线矩阵了。需要做两件事情:明确每个数据域下有哪些业务过程;业务过程与哪些维度相关,并定义每个数据域下的业务过程和维度。

规范定义:规范定义主要定义指标体系,包括原子指标、修饰词、时间周期和派生指标。

模型设计:模型设计主要包括维度及属性的规范定义,维表、明细事实表和汇总事实表的模型设计。相关实践详解请参考后续章节。

总结:OneData的实施过程是一个高度迭代和动态的过程,一般采用螺旋式实施方法。在总体架构设计完成之后,开始根据数据域进行迭代式模型设计和评审。在架构设计、规范定义和模型设计等模型实施过程中,都会引入评审机制,以确保模型实施过程的正确性。
注:本书中出现的部分专有名词、专业术语、产品名称、软件项目名称、工具名称等,是淘宝(中国)软件有限公司内部项目的惯用词语,如与第三方名称雷同,实属巧合。

节选自《大数据之路:阿里巴巴大数据实践》已受版权保护,未经授权不得转载

**连载1:阿里巴巴大数据实践—数据开发平台>>
连载2:阿里巴巴大数据实践—实时技术>>
连载3:阿里巴巴大数据实践—数据服务>>
连载4:阿里巴巴大数据实践—数据建模综述
连载5:阿里巴巴大数据实践—阿里巴巴的数据模型实践综述>>**


数据中台是企业数智化的新基建,阿里巴巴认为数据中台是集方法论、工具、组织于一体的,“快”、“准”、“全”、“统”、“通”的智能大数据体系。目前正通过阿里云数据中台解决方案对外输出,包括零售金融互联网政务等领域,其中核心产品有:

官方站点:
数据中台官网 https://dp.alibaba.com
数据中台钉钉群二维码2.jpg

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
57 4
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
90 1
|
1月前
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
36 4
|
1月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
82 0
|
15天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
16天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
ly~
|
1月前
|
供应链 搜索推荐 安全
大数据模型的应用
大数据模型在多个领域均有广泛应用。在金融领域,它可用于风险评估与预测、智能营销及反欺诈检测,助力金融机构做出更加精准的决策;在医疗领域,大数据模型能够协助疾病诊断与预测、优化医疗资源管理和加速药物研发;在交通领域,该技术有助于交通流量预测、智能交通管理和物流管理,从而提升整体交通效率;电商领域则借助大数据模型实现商品推荐、库存管理和价格优化,增强用户体验与企业效益;此外,在能源和制造业中,大数据模型的应用范围涵盖从需求预测到设备故障预测等多个方面,全面推动了行业的智能化转型与升级。
ly~
83 2
|
1月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
71 0
|
1月前
|
SQL 大数据
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
57 0
|
1月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
40 0