对人工智能的应用、发展及其影响的思考

简介: 剑桥大学人工智能研究中心对人工智能提供的新功能和面临的风险进行了分析和探讨,同时纠正了一些人对人工智能的质疑和成见。

剑桥大学人工智能研究中心对人工智能提供的新功能和面临的风险进行了分析和探讨,同时纠正了一些人对人工智能的质疑和成见。

该研究中心汇集了不同领域的专家,旨在研究和预测随着人工智能领域快速发展带来的可能性和挑战,并为人工智能提供一个更加可衡量和有用的视角。参与制定新提案的剑桥大学人类生存风险研究中心(CSER)的SeánÓh Éigeartaigh博士指出:“人工智能在我们研究中心的议程中占据重要地位,其部分原因是因为人工智能技术近年来取得了重大的进展。这表明其研究已经产生了巨大的影响,并且进展非常迅速。另一方面,由于人工智能存在很多需要处理的问题,只是关注灾难和风险限制了我们在该领域的研究范围。”

该研究中心的构想是召集来自相关学科的人工智能专家,不仅考虑长期风险、机遇和挑战,还研究人工智能的长期、短期和中期影响。

1.jpg



人工智能的不同方法

尽管人工智能经常成为行业媒体的头条新闻,或者成为一些科幻电影的主题,但剑桥大学人类生存风险研究中心(CSER)的研究工作提供了不同的角度和观点。

尽管有关人工智能的风险让人们感到不寒而栗,但当前的影响相对有限。ÓhÉigeartaigh博士为此解释说:“坦白地说,人们看到的人工智能系统的不利影响是有限的,因为它们大多是执行某些任务(例如交通导航、下棋或运行搜索引擎)的良好实践。目前,我们或许可以解决人工智能认知能力的问题。”

这种审慎方法使该中心不仅意识到人工智能技术可能带来的严重问题,而且还要提供利用这种新技术的机会。

ÓhØigeartaigh博士说,“在这个世界上,只有生物才能进行学习、适应、思考,并做更多事情。但是,为智能只能发生在生物学中这个观点进行辩护证明了这样一个论点:在某一时刻,我们将掌握足够的资源重新创造它。”

虽然ÓhÉigeartaigh博士的主要研究领域是计算生物学,但他已经进行了多年的跨学科项目的研究。通过这种方式,他采用了多学科的思维方式,从各种不同的角度来处理人工智能的问题。

ÓhÉigartaigh博士指出,“解决这些重大问题的答案不仅仅是在计算机科学或计算生物学领域,还要思考这些长期的和广泛的问题,需要采用政治、经济、法律、社会学甚至哲学领域的专业知识。”


人工智能的应用

事实上,对人工智能不同视角的需求不仅是产生原始想法和观点的一部分,而且是对人工智能如何采用不同专业知识解决问题的部分答案。

ÓhÉigartaigh博士说,“科学家面临的大多数挑战是,必须分析来自各种来源的大量数据,并理解相互联系的极其复杂的系统。即使对于合作研究的多个团队来说,这也是一件非常困难的事情。

我们目前正在开发的系统能够处理大数据。例如,帮助分析数以百万计的基因组以找到癌症的起源,分析气候变化的许多方面,或者试图使太阳能、能源网或智能家居更高效。如果我们发现如何将人工智能应用于所面临的问题,就可以解决这些问题。我们也将为人类的进步做出贡献。”

ÓhÉigeartaigh博士表示,加速技术变革的社会、政治和文化等方面也属于科学问题。他以自动驾驶汽车在未来导致出租车或长途汽车司机失业这种短期问题为例,人工智能取代人力,促使这些人寻求其他力所能及的工作,这正是不同领域应该为这些问题进行讨论的原因。

Óhéigeartaigh博士指出,尽管有一些风险需要解决(例如人工智能将很快使多功能无人机的发展成为现实),但人工智能并不等同于人类智能。

与目前在许多技术中使用比较受限的人工智能不同,许多对通用人工智能的失败预测在在过去早已出现。Óhéigeartaigh博士说:“有些人可能会争辩说,目前对人工智能的开发热情是错误的。而我们还将看到在人工智能领域有着更多令人兴奋的投资。虽然这种情况在本世纪发生的可能性只有50%,但应该有人在思考和研究这个问题。”

这也表明了另一个重要的观点:即使人工智能技术整体失败,在这一领域取得的技术进步仍然非常重要,而人工智能技术的这些发展和进步对社会、文化、政治的影响需要进行考虑、讨论和思考。


不同类型的智能

关于人工智能的论述和讨论所涉及的另一个问题是,人们以一种以人类为中心的方式来处理这个问题,然而还需要考虑到世界上存在着不同类型的智能。

ÓhÉigeartaigh博士建议采用一种将人类与地球都置于中心的方法,从人类智能到食肉动物的智能,而不应局限于以人类为中心的智能。

ÓhÉigeartaigh博士表示,他们在初始阶段定义的第一个项目是“智能类型”,已经开始就这个项目召开会议。参会专家其中包括英国帝国理工学院神经学教授Murray Shanahan,他是研究黑猩猩智能、数学逻辑和机器学习方面的专家。所有参会的专家都致力于为不同类型的智能找到相对较新的想法。


人工智能如何发展

Óhéigeartaigh博士表示,另一个问题是这种人工智能将如何发展。进化生物学是通过反复试验而发展起来的,某些错误率较高的生物的发展速度要快于其他较低的错误耐受性生物体。他说,“在设计算法和人工智能时,专家可以选择想要的方式。我们还提供人工智能学习课程,我们称之为进化算法,可以在一定程度上使用试错法。我们之所以希望对发生的变化持开放态度,也有我们不希望发生变化的原因,因为我们最终可能得不到任何重要的东西,或者可能会产生意想不到的后果。”

在这一点上,许多不同的进化因素起作用。科学领域的革命带来了更多的人才以及为人工智能领域分配更多资源,从而以爆炸性的速度促进了人工智能领域的发展。他说:“这方面的一个例子是,深度学习在早期取得的巨大成功。这使更多的资源得到了利用,许多成功的组织都使用了这种方法。”


人工智能的未来发展

同样,可以说人工智能在概念上有所突破,但是无法预测实现这些突破将花费多长时间或将在多大程度上促进该领域的发展。ÓhÉigeartaigh博士评论说:“我们无法预测的事情会带来极大的不确定性,因此可以确定的是,将在2070年实现通用人工智能是荒谬的。但是迟早会有革命性的突破,在这种情况下,需要鼓励人们对具有社会影响力的事物进行原创性和创造性的思考。”

他表示,剑桥大学人类生存风险研究中心(CSER)还将作为一个交流中心,积极与学术界和工业界人士沟通和交流,并举办研讨会和行业会议。

他说,“我们旨在创建一个社区,致力于鼓励未来的意见领袖和研究领袖从长远方面解决影响我们所有人的问题。我相信,越来越多的年轻人将成为该领域未来的行业和政治领袖,并将会发挥重要作用。”
机器智能技术结尾二维码.png

文章来源:https://ai.51cto.com/art/202009/625306.htm
文章转自51CTO,本文一切观点和《机器智能技术》圈子无关

目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
7天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
14天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
14天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
55 3
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
110 2
|
11天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
17天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在医疗诊断中的应用
【10月更文挑战第36天】随着人工智能技术的飞速发展,其在各行各业的应用日益广泛,特别是在医疗领域。本文将深入探讨AI技术如何革新传统医疗诊断流程,提高疾病预测的准确性,以及面临的挑战和未来发展方向。通过具体案例分析,我们将看到AI如何在提升医疗服务质量、降低医疗成本方面发挥关键作用。
91 58
|
12天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
53 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
7天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
29 4