如何基于大数据及AI平台实现业务系统实时化?

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 后疫情时代的新社会模式及经济形态必将催生出新的商业模式,在线业务及相关应用场景的流量呈现井喷式发展,常规的离线系统及离线机器学习平台已无法满足业务发展要求。

作者:高旸(吾与),阿里巴巴高级技术专家

1. 前言

随着互联网“人口红利”的“消耗殆尽”,基于“T+1”或者离线计算的机器学习平台及推荐系统转化率与效果日趋“平淡”。后疫情时代的新社会模式及经济形态必将催生出新的商业模式,在线业务及相关应用场景的流量呈现井喷式发展,常规的离线系统及离线机器学习平台已无法满足业务发展要求。人口红利吃尽之后,基于大数据及AI平台的业务系统在时间维度上的思考将变得至关重要,通过业务系统实时化向时间要价值已经成为主流趋势。基于流式计算引擎的在线机器学习平台将越来越被重视, 通过增量模型的准实时或实时推荐系统更能“因时而异” 充分捕捉目标用户瞬息万变的需求,从而进行精准推荐和变现。实时推荐系统也从最早的电商场景, 扩展到社交场景, 在线教育场景, 游戏场景及更广阔的在线场景。

本文介绍重点介绍基于阿里云大数据及AI产品家族的实时计算Flink及PAI Alink机器学习算法平台,以及该产品组合在实时推荐场景(适用于电商、游戏及在线教育解决方案)、实时评分卡场景(适用于金融、安全及营销风控解决方案)以及异常检测场景(适用于工业领域及其他产业互联网领域)的场景应用。

2. 实时计算引擎及机器学习算法平台介绍

2.1 阿里云实时计算Flink

阿里云实时计算Flink作为Apache Flink创始团队的商业化产品,从极致(较传统微批模式)的实时数据处理维度,为企业大数据处理及业务实时化提供了可能。商业化的统一开发及管控平台,成熟、准标准化的SQL及元数据管理能力,让业务人员及数据分析师大幅度提升开发效率, SQL配合UDF基本可以解决80%+的业务场景。企业级的State Backend – Gemini大幅度提升IO效率,整体执行引擎较开源3倍以上的性能提升。

VVP.png

基于阿里云Kubernetes的全新Serverless全托管云上实时计算Flink服务,使用全新的硬多租技术方案,基于VPC提供网络层隔离,阿里云安全容器提供计算层隔离,基于弹性云盘提供存储级隔离,通过用户级Master及超级Master实现极致资源弹性下的多租户隔离。基于负载的细粒度弹性伸缩, 充分提高资源使用率, 降低整体TCO。新一代的Serverless实时计算Flink产品为在线机器学习算法平台提供了坚实(“时“)的基础。

2.png

2.2 阿里云PAI Alink机器学习算法平台

3.png

与SparkML算法相比,Alink算法更全面,性能更优异,场景更丰富(同时支持流批),本地化更出色(支持中文分词)是快速搭建在线机器学习系统的不二之选。

4.png

3. 基于实时计算Flink-机器学习场景介绍:

3.1实时推荐场景:

从根据用户点击和浏览的内容实时推送的电商场景,到社交媒体根据用户阅读的内容实时“喂送“的实时推荐系统,再到游戏推送平台根据用户行为实时推送的游戏系统,实时推荐系统俨然已经成为了在线业务系统的核心。

5.png

阿里云PAI Alink算法平台提供: 召回(例如:ALS、FM、Deep Walk等),特征编码(OneHot、MultiHot及GBDT等) ,排序(LR及FFM等)以及Online算法(OnlineFM及Ftrl)流式和批式的算法能力全流程构建能力。配合阿里云实时计算Flink海量样本实时拼接能力,能够快速端到端实现离在线一体化的推荐系统。

6.png

通过特征工程批式训练初始化模型,通过实时样本拼接配合流式算法(OnlineFM及Ftrl) 生成增量的模型,最终提供统一模型的整体结果预测,更实时更动态的提升推荐效果。

7.png

3.2 评分卡场景介绍:

阿里云实时计算Flink及PAI Alink产品组合可以帮助客户快速搭建实时金融风控解决方案。评分卡在金融场景有广泛的应用,能否构建准确的评分卡模型关系到能否安全的开展支付、贷款、保险、理财、信用等业务,评分卡常被用于信用评估领域,比如信用卡风险评估,贷款发放;评分卡也会用来作为分数评估,比如客户质量打分,信用分。涉及金融的场景都需要:可追溯、可审计及可解释,如下的评分卡模型就具备很好的可解释性。例如:用户年龄27岁,性别男,婚姻状况已婚,学历本科,月收入10000。根据如下评分卡,该用户的评分为:评分 = 223(基准分) + 8(年龄) + 4(性别评分)+ 8(婚姻状况)+ 8(学历评分)+ 13(月收入评分)= 264分。

8.png

阿里云实时计算Flink及PAI Alink产品组合提供最先进的评分卡解决方案, 分箱将每个特征按照需求进行分箱训练;评分卡训练生成评分模型;样本稳定性通过PSI等指标衡量样本稳定性;模型评估,评估二分类模型效果。该解决方案支持多特征维度模型训练,支持大规模样本建模。

9.png

3.3 异常检测场景

异常检测及时序分析是一个较为常见并且应用广泛的场景,在工业界的应用尤甚。利用阿里云实时计算Flink及PAI Alink产品组合可以帮助客户快速搭建异常检测解决方案。实时计算Flink强大的性能与Alink丰富的算法库机相结合,可以帮助数据分析和应用开发人员实现数据处理、特征工程、模型训练、预测等多个环节端到端的处理。在异常检测场景下,Alink支持时间序列异常检测、异常集检测两个核心场景。

在时间序列异常检测中,Alink具备种类齐全、批流一体、性能优异、并行计算、使用方便等优势。针对不同的使用场景,分为基于时序预测和时序分解两种类型:

  • 时序预测算法适合流式数据,即时响应
  • 时序分解算法适合全量数据,能够从全量数据中挖掘有效信息。

Alink也提供了时序预测和时序分解算法,用户可以单独使用。

10.png

异常集检测是风控场景的核心诉求之一。Alink 异常集检测中具备如下优势:

  • 巨型图支持 - 支持上亿边的图数据
  • 在线更新 - 随时加上异常种子均可局部异常检测
  • 快速运算 - 只对局部图进行运算,节约计算资源

在盗用、欺诈、作弊、商户、借贷套现等各风险域都有异常集检测的需求存在。基于GraphRAD,Alink实现了半监督的异常集检测,RiskCommunityDetector。算法输入连接关系以及已知的黑点,即可对全图进行分析,捕获其它黑用户,降低业务运行过程中的风险,为业务安全保驾护航,避免可能发生的重大损失。

11.png

4. 后记

通过上文的介绍,想必大家已经对阿里云实时计算Flink及PAI产品组合跃跃欲试了,可以快速开通全托管实时计算Flink 体验最新的Serverless产品服务。实时计算Flink触达直通车:https://www.aliyun.com/product/bigdata/sc

12.png

通过开通阿里云E-MapReduce Dataflow集群,快速搭建基于阿里云实时计算Flink的PAI Alink算法平台。PAI Alink触达直通车:https://www.aliyun.com/product/emapreduce

13.png

实时计算 Flink 版产品交流群

实时计算交流群.jpg

阿里云实时计算Flink - 解决方案:
https://developer.aliyun.com/article/765097
阿里云实时计算Flink - 场景案例:
https://ververica.cn/corporate-practice
阿里云实时计算Flink - 产品详情页:
https://www.aliyun.com/product/bigdata/product/sc

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
74 9
|
8天前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
【赵渝强老师】基于大数据组件的平台架构
|
11天前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
14天前
|
存储 人工智能 文字识别
利用AI能力平台实现档案馆纸质文件的智能化数字处理
在传统档案馆中,纸质文件管理面临诸多挑战。AI能力平台利用OCR技术,通过图像扫描、预处理、边界检测、文字与图片分离、文字识别及结果存储等步骤,实现高效数字化转型,大幅提升档案处理效率和准确性。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
37 3
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
16天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
21天前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
74 10
|
21天前
|
SQL 人工智能 DataWorks
DataWorks:新一代 Data+AI 数据开发与数据治理平台演进
本文介绍了阿里云 DataWorks 在 DA 数智大会 2024 上的最新进展,包括新一代智能数据开发平台 DataWorks Data Studio、全新升级的 DataWorks Copilot 智能助手、数据资产治理、全面云原生转型以及更开放的开发者体验。这些更新旨在提升数据开发和治理的效率,助力企业实现数据价值最大化和智能化转型。
175 5
|
21天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
153 6