优化搜索排序结果从而“ 提升CTR、CVR业务指标”

简介: 搭建搜索功能不难,难的是如何提高搜索质量,帮助用户快速找到心中所想的内容或商品,那么搜索结果的相关性排序则是影响用户体验最关键的一环,本文通过阿里云开放搜索电商行业解决方案和大家聊一聊如何优化排序结果

案例背景

某导购类电商APP,与淘宝天猫等一线商家合作,亿级商品索引量,类目和子类目多层嵌套,商品有不同子款式和尺码,搜索和筛选需求复杂。通过采用分销+券模式,优惠券帮助普通C用户降低了单品价格,分销模式帮助推广者B增加了用户数量,平台获得分成,用户下单后还可以返现金和优惠券,从而提升复购率, 其中搜索的流量占比站内流量60%以上,所以对于搜索结果的召回和排序有极高的要求,衡量搜索效果的直接指标就是成单转化率。

需求反馈

业务方希望迅速扩大市场提高用户体验,需求开发团队针对产品功能快速优化,进一步提升CTR、CVR的业务指标

需求分析

• 电商行业中,“搜索”是帮助用户定位自己想要的商品提升转化的重要渠道;搜索引擎的效果优化是一个很大的话题,在查询意图理解阶段可以有语义理解、命名实体识别、词权重分析、拼写纠错等优化手段,在排序阶段可有文本相关度、人气模型、类目预测等优化手段,通过配置查询分析策略和调整排序公式,我们对于效果优化可以有很大的发挥空间,再通过AB测试来对比不同优化策略的效果表现,我们可以做到效果优化心中有数。
• 业务指标数据中“点击率和转化率”则直观反映了搜索结果页的商品结果是否满足用户的需求;
• 优化召回和排序结果可以帮助用户快速找到心中所想的内容,是改善用户体验,降低跳出率,促进用户转化率的最好方法。

阿里云开放搜索解决方案

Query在开放搜索的执行流程:
image.png

开放搜索的优化方案:
1.查询意图理解优化方案可以参考上一篇文章:https://developer.aliyun.com/article/770543?spm=a2c6h.12873581.0.dArticle770543.12b01cc67mFsIp&groupCode=aios

2.开放搜索-类目预测功能
类目预测是开放搜索里基于物品的类目信息改善搜索效果的算法功能,类目预测根据用户的查询词来预测用户想要查询哪个类目的结果,结合排序表达式,可以使得更符合搜索意图的结果排序更靠前。
例如:用户搜索“华为”
• 大部分人意图其实是想获得“华为手机”,但因为销量大小、价格高低、店铺等级等各种原因,存在“华为手表”等配件商品排在“华为手机"更前面。
• 当我们训练“类目预测模型”,模型就会表达出一个信息,根据行为数据统计发现点击“手机”类目要比点击“配件”类目的人多很多,那么模型会给出这样的预测结果,对于“华为”这个query来说,“手机”类目与“华为”的相关度,比“配件”类目与“华为”的相关度高, 所以在计算每个物品的排序分的过程中,“手机”类目下的物品所获得的得分要比“配件”类目下的物品得分高,从而“手机”类目下的物品会排在更前面。
这样的排序结果才是一个比较符合用户预期的结果,用户才更有可能点进去了解详情,从而提升搜索的业务价值,提升CVR的业务指标;
image.png

3.排序算法优化
支持两轮相关性排序定制,搜索结果相关性排序是影响用户体验最关键的一环,开放搜索支持开发者定制两轮相关性排序规则来准确控制搜索结果的排序。第一轮为粗排,从命中的文档集合里海选出相关文档。第二轮为精排,对粗排的结果做更精细筛选,支持任意复杂的表达式和语法。方便开发者能更准确控制排序效果,优化系统性能,提高搜索响应速度。
image.png
image.png
引用智能排序人气模型:离线计算的模型,淘宝搜索最基础的排序算法模型。人气模型会计算量化出每个商品的静态质量及受欢迎的程度的值,不断训练统计形成人气分,构建更精细化的排序模型,精准命中搜索需求,将人气模型involve成为排序的一个因子,搜索结果的转化率还会有质的飞跃。

image.png

如果你想与更多开发者们进行交流、了解最前沿的搜索与推荐技术,可以钉钉扫码加入社群~

image.png

【开放搜索】新用户活动:阿里云实名认证用户享1个月免费试用~https://www.aliyun.com/product/opensearch

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理
一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理
一文搞懂【知识蒸馏】【Knowledge Distillation】算法原理
|
机器学习/深度学习 自然语言处理 计算机视觉
TabTransformer:用于表格数据的Transformer
TabTransformer:用于表格数据的Transformer
1020 0
TabTransformer:用于表格数据的Transformer
|
SQL 安全 网络协议
常用和不常用端口一览表收藏
大家在学习计算机的时候,对于最常用的几个端口比如80端口肯定有很深的印象,但是对于其他一些不是那么常用的端口可能就没那么了解。所以,在一些使用频率相对较高的端口上,很容易会引发一些由于陌生而出现的错误,或者被黑客利用某些端口进行入侵。
4602 0
|
17天前
|
数据采集 机器学习/深度学习 人工智能
大模型“驯化”指南:从人类偏好到专属AI,PPO与DPO谁是你的菜?
本文深入解析让AI“懂你”的关键技术——偏好对齐,对比PPO与DPO两种核心方法。PPO通过奖励模型间接优化,适合复杂场景;DPO则以对比学习直接训练,高效稳定,更适合大多数NLP任务。文章涵盖原理、实战步骤、评估方法及选型建议,并推荐从DPO入手、结合低代码平台快速验证。强调数据质量与迭代实践,助力开发者高效驯化大模型,实现个性化输出。
270 8
|
机器学习/深度学习 人工智能 搜索推荐
底层技术大揭秘!AI智能导购如何重塑购物体验
双十一期间,淘宝内测AI助手“淘宝问问”,基于阿里通义大模型,旨在提升用户在淘宝上的商品搜索和推荐效率。该助手通过品牌推荐、兴趣商品推荐和关联问题三大板块,提供个性化购物体验。其背后采用多智能体架构,包括规划助理和商品导购助理,通过对话历史和用户输入,实现精准商品推荐。此外,文章还介绍了如何快速部署此解决方案,并探讨了其对现代购物体验的影响。
|
监控 搜索推荐 API
京东按图搜索京东商品(拍立淘)API接口的开发、应用与收益
京东通过开放商品详情API接口,尤其是按图搜索(拍立淘)API,为开发者、企业和商家提供了创新空间和数据支持。该API基于图像识别技术,允许用户上传图片搜索相似商品,提升购物体验和平台竞争力。开发流程包括注册账号、获取密钥、准备图片、调用API并解析结果。应用场景涵盖电商平台优化、竞品分析、个性化推荐等,为企业带来显著收益,如增加销售额、提高利润空间和优化用户体验。未来,随着数字化转型的深入,该API的应用前景将更加广阔。
563 1
|
机器学习/深度学习 Unix 开发者
python的环境管理工具有哪些
python的环境管理工具有哪些
420 0
|
机器学习/深度学习 存储 人工智能
ACL 2024|D2LLM:将Causal LLM改造成向量搜索模型的黑科技
D2LLM:一种针对语义搜索任务的新颖方法,它结合了大语言模型(LLM)的准确性与双编码器的高效性。实验表明,D2LLM在多项任务上的性能超越了五个领先基准模型,尤其是在自然语言推理任务中,相对于最佳基准模型的提升达到了6.45%
382 1
|
IDE 开发工具 Python
Python应用语法中缩进错误
【5月更文挑战第18天】
535 1
|
自然语言处理 数据可视化 数据挖掘
首批!瓴羊Quick BI完成中国信通院大模型驱动的智能数据分析工具专项测试
首批!瓴羊Quick BI完成中国信通院大模型驱动的智能数据分析工具专项测试
662 1