Elastic Stack 实现地理空间数据采集与可视化分析-阿里云开发者社区

开发者社区> Elasticsearch 技术团队> 正文

Elastic Stack 实现地理空间数据采集与可视化分析

简介: 如何使用 Elastic Stack 来收集这些地理空间位置信息,并对它们进行可视化化分析。

随着人类在不断地探索空间,地理空间数据越来越多。 收集信息的速度以及提供位置信息的来源正在迅速增长。政府和商业卫星继续扩张。与GPS一起,它们提供了一系列不同的空间丰富的数据源,包括天气和温度模式,土地使用,土壤化学,减灾和响应,电信等。

image.png

移动设备和底层网络将人员,汽车,卡车和大量踏板车变成了位置信息的来源。计算机网络将位置信息嵌入IP地址元数据中,这可以帮助IT管理员在分布式基础架构中为用户提供支持,或者帮助执法部门以及我们的网络运营商找到并阻止坏人。所有这些数据都是令人兴奋的,它激发了每个人内部的创造力来利用它。提出新的问题,构思新的想法,并建立新的期望。这些新事物不容易解决。他们需要以不同格式存储的数据或跨非空间维度(如主题标签或网络域)的相关性存储的数据。尽管专家长期以来拥有执行复杂的地理空间分析的工具,但这些工具并不总是能够完成非传统来源的混合或处理当今数据集规模的任务。现在事情变得更加复杂。Elastic Stack 是一个高效的存储,分析及搜索软件栈。Elastic Stack 正在积极地推动这一进程。为我们提供更多的数据,更多的用途和更多的利益。

image.png

准备工作:

我将使用 opensky network API 来获取飞机的飞行信息,并使用 Kibana 来对数据进行展示。

1、开通阿里云 Elasticsearch 1核2G ,免费测试环境
2、开通阿里云 Logstash 2核4G ,免费测试环境

我们通过阿里云控制台,进入 阿里云 kibana

Logstash 配置文件

在这个展示中,我们将使用 Logstash 定期地去 opensky network 网站上去抓取数据,并导入到 Elasticsearch 中。Logstash 的配置文件如下:

fligths_logstash.conf

input {
    http_poller {
        codec => "json"
        schedule => { every => "15s" }
        urls => {
            url => "https://opensky-network.org/api/states/all"
        }
    }
}
 
filter {
    split {
        field => "states"
        add_field => {
            "icao" => "%{[states][0]}"
            "callsign" => "%{[states][1]}"
            "origin_country" => "%{[states][2]}"
            "time_position" => "%{[states][3]}"
            "last_contact" => "%{[states][4]}"
            "location" => "%{[states][6]},%{[states][5]}"
            "baro_altitude" => "%{[states][7]}"
            "on_ground" => "%{[states][8]}"
            "velocity" => "%{[states][9]}"
            "true_track" => "%{[states][10]}"
            "vertical_rate" => "%{[states][11]}"
            "geo_altitude" => "%{[states][13]}"
            "squawk" => "%{[states][14]}"
            "spi" => "%{[states][15]}"
            "position_source" => "%{[states][16]}"
        }
    }
    mutate {
        strip => ["callsign"]
        rename => { "time" => "request_time" }
        remove_field => ["states", "@version"]
    }
    translate {
        field => "[position_source]"
        destination => "position_source"
        override => "true"
        dictionary => {
          "0" => "ADS-B"
          "1" => "ASTERIX"
          "2" => "MLAB"
        }
    }
 
    if [time_position] =~ /^%{*/ {
        drop { }
    }
    if [callsign] =~ /^%{*/ {
        mutate { remove_field => ["callsign"] }
    }
    if [location] =~ /^%{*/ {
        mutate { remove_field => ["location"] }
    }
    if [baro_altitude] =~ /^%{*/ {
        mutate { remove_field => ["baro_altitude"] }
    }
    if [velocity] =~ /^%{*/ {
        mutate { remove_field => ["velocity"] }
    }
    if [true_track] =~ /^%{*/ {
        mutate { remove_field => ["true_track"] }
    }
    if [vertical_rate] =~ /^%{*/ {
        mutate { remove_field => ["vertical_rate"] }
    }
    if [sensors] =~ /^%{*/ {
        mutate { remove_field => ["sensors"] }
    }
    if [geo_altitude] =~ /^%{*/ {
        mutate { remove_field => ["geo_altitude"] }
    }
    if [squawk] =~ /^%{*/ {
        mutate { remove_field => ["squawk"] }
    }
 
    mutate {
        convert => { 
            "baro_altitude" => "float" 
            "geo_altitude" => "float"
            "last_contact" => "integer"
            "on_ground" => "boolean"
            "request_time" => "integer"
            "spi" => "boolean"
            "squawk" => "integer"
            "time_position" => "integer"
            "true_track" => "float"
            "velocity" => "float"
            "vertical_rate" => "float"
        }
    }
}
 
output {
    stdout { 
        codec => rubydebug
    }
 
    elasticsearch {
        manage_template => "false"
        index => "flights"
        # pipeline => "flights_aircraft_enrichment"
         hosts => "localhost:9200"
    }
}

从上面的 input 部分我们可以看出来:

input {
    http_poller {
        codec => "json"
        schedule => { every => "15s" }
        urls => {
            url => "https://opensky-network.org/api/states/all"
        }
    }
}

这里,我们使用 http_poller 每隔15秒去抓一次数据.如果大家想知道这个 API https://opensky-network.org/api/states/all 的内容是什么,你可以直接在浏览器的地址栏中输入这个地址,你及可以看出来是什么样的格式的信息。你可以使用工具 http://jsonviewer.stack.hu/ 对这个 JSON 格式的返回信息进行格式化,以便更好地分析它里面的数据。这对在 filter 部分的各个过滤器的使用的理解是非常有帮助的。在 filter 的最后部分,我也对数据的类型进行了转换以便更好地在 Kibana 中进行分析。

为了能够使得我们的 flights 的数据类型和我们转换的数据类型进行很好的匹配,我们必须在 Kibana 中对这个索引定义好它的 mapping:

PUT flights
{
  "mappings": {
    "properties": {
      "@timestamp": {
        "type": "date"
      },
      "baro_altitude": {
        "type": "float"
      },
      "callsign": {
        "type": "keyword"
      },
      "geo_altitude": {
        "type": "float"
      },
      "icao": {
        "type": "keyword"
      },
      "last_contact": {
        "type": "long"
      },
      "location": {
        "type": "geo_point"
      },
      "on_ground": {
        "type": "boolean"
      },
      "origin_country": {
        "type": "keyword"
      },
      "position_source": {
        "type": "keyword"
      },
      "request_time": {
        "type": "long"
      },
      "spi": {
        "type": "boolean"
      },
      "squawk": {
        "type": "long"
      },
      "time_position": {
        "type": "long"
      },
      "true_track": {
        "type": "float"
      },
      "velocity": {
        "type": "float"
      },
      "vertical_rate": {
        "type": "float"
      }
    }
  }
}

在 Kibana 的 Dev Tools 中运行上面的指令,这样我们就创建好了 flights 索引的 mapping。

接下来,我就可以启动 通过阿里云 控制台,进入Logstash 了。

这时,我们可以在 console 中看到如下的输出:

image.png

它表明我们的 Logstash 正在工作。
我们接下来在 Kibana 中打入如下命令:

GET _cat/indices

image.png


我们可以看到文件大小不断增长的 flights 索引。它表明我们的数据正被导入到 Elasticsearch 中。
为了分析数据,我们必须创建一个 index pattern:

image.png


点击 Create index pattern:

image.png

点击 Next step:

image.png

点击上面的 Create index pattern。这样就完成了创建 Index pattern。

运用 Kibana 可视化

显示目前所有的正在飞行的飞机

我们接下来显示所有目前正在的飞行的飞机。打开 Kibana,并创建 Visualization:

image.png

点击上面的 Create new visualization:

image.png

选择 Maps:

image.png

点击 Add layer:

image.png

选择 Documents:

image.png

点击上面的 Add layer:

image.png

向下滚动:

image.png

我们选择飞机机场图标为固定的图标。选择速度为它的颜色,速度越快,颜色越深。

image.png

同时,我们绑定图标的方向为 true_track,这是飞机的飞行方向。同时飞机的高度越高,图标就越大。点击 Save & close 按钮:

image.png

image.png


同时设定每隔两秒整,抓取数据一次,这样我们就可以看到每个飞机的状态了。点击上面的 Apply:

image.png

点击上面的 Save 按钮,并取名为 v1。这样我们就创建了第一个 Visualization。

显示飞机过去7天的数据

和上面的显示一样,只不过这次,我们显示过去7天的数据,而不是最新的一个数据。

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

点击上面的 Save & close:

image.png

从上面,我们可以看到每架飞机的轨迹。

查看哪个国家的飞机航班多

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

找出各个地区的机场数目

image.png

点击 Create map:

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

我们看一下美国有时间上最多的机场。
我们可以发现从美国起飞的飞机是最多的,颜色最深。

声明:本文由原文作者“ Elastic 中国社区布道师——刘晓国”授权转载,对未经许可擅自使用者,保留追究其法律责任的权利。

出处链接:https://elasticstack.blog.csdn.net/.


image.png

阿里云Elastic Stack】100%兼容开源ES,独有9大能力,提供免费 X-pack服务(单节点价值$6000)

相关活动


更多折扣活动,请访问阿里云 Elasticsearch 官网

阿里云 Elasticsearch 商业通用版,1核2G ,SSD 20G首月免费
阿里云 Logstash 2核4G首月免费


image.png

image.png

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:

Elasticsearch 作为一个分布式、高扩展、实时的搜索与数据分析引擎,因其轻量级、稳定、可靠、快速等特性受到越来越多开发者的青睐,在搜索、日志分析、运维监控和安全分析等领域得到广泛应用。

官方博客
友情链接