【最佳实践】实时计算Flink在广告行业的实时数仓建设实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 通过每个广告位上不同广告的投放地区、广告ID、设备唯一编码等信息,可以统计点击次数、投放次数等指标,可用于制定更高效的广告投放策略,降低投放成本,提高广告收益。

行业背景

  • 行业现状: 

    • 广告仍然是互联网公司的主要变现手段,2019年,中国广告市场总体规模达到8674.28亿元,较2018年增长了8.54%,据统计全球互联网市值前十的公司广告收入占比高达40%,可见其重要性。AI、大数据、智能投放等创新技术的普及应用,不仅创生了一批独角兽营销平台,而且大幅拉低了广告投放门槛,拓宽了广告市场空间。
  • 大数据在其行业中的作用:

    • 大数据技术的应用在改变我们生活及工作的同时,为我们寻找数据背后的客观规律提供了一种有效途径。对潜在消费群体进行深入分析,并进行定制营销基础上的现代广告营销,对数据的规模及精准度有着极高的要求,而大数据的出现无疑为其落地提供了强有力的支撑。

业务场景

类似媒体,新闻类等APP,上面有各种广告位提供给广告主。广告主投放广告,用户点击广告将实时的产生操作日志数据,对这些日志数据进行实时分析,通过每个广告位上不同广告的投放地区、广告ID、设备唯一编码等信息,可以统计点击次数、投放次数等指标,可用于制定更高效的广告投放策略,降低投放成本,提高广告收益。

技术架构

image.png


架构解析:
数据采集:该场景中,APP、Web、Server等服务上会产生大量的广告投放、用户广告点击等操作日志数据,这些日志数据被实时采集至日志服务系统(SLS),作为Flink的数据源。
实时数仓架构:该场景中,整个实时数仓构建,全部通过 Flink完成。Flink读取SLS中的原始日志数据,经过数据清洗、数据处理等操作写出到DataHub,Flink进一步读取DataHub的数据进行实时统计分析,最终输出对应的指标结果到RDS,供业务系统使用。

业务指标

  • 实时数据中间层,对原始日志进行实时数据清洗

    • 获取投放主题及维度打宽
    • 获取点击主题及维度打宽
  • 统计投放指标

    • 某个广告在某个省的当天投放量
    • 某个广告在某个市的当天投放量
    • 某个广告在某个投放终端的当天投放量
  • 统计点击指标

    • 某个广告在某个省的当天点击量
    • 某个广告在某个市的当天点击量
    • 某个广告在某个投放终端的当天点击量
  • 热门广告排行榜    

业务代码

场景一:对原始日志进行实时数据清洗

投放主题

根据业务主题分成投放主题和点击主题,当release_status=1时为投放主题。

输入表

create table ods_release(
  `sid` varchar,           --投放请求ID
  exts varchar,                       --扩展信息
  device_type varchar,     --1 android| 2 ios | 9 其他
  release_status varchar,  --投放状态 1 or 2
  device_num varchar,      --设备唯一编码
  release_session varchar, --投放会话ID
  `date` date              --创建时间
) with (
  type ='sls',
...
);

输出表

create table dw_release_exposure(
  release_session varchar, -- comment '投放会话id'
  release_status varchar,  -- comment '投放状态'
  device_num varchar,      -- comment '设备唯一编码'
  device_type varchar,     -- comment '1 android| 2 ios | 9 其他'
  area_code varchar,       -- comment '地区'
  aid varchar,             -- comment '广告id'
  ct date                  -- comment '创建时间'
)with(
type='datahub',
...
);

业务代码

insert into dw_release_exposure
select
  release_session,
  release_status,
  device_num,
  device_type,
  json_value(exts,'$.area_code'),
  json_value(exts,'$.aid'),
  `date` as ct
from
ods_release
where release_status='1'
;

投放主题关联维度表

投放主题与地区维度表、设备维度表进行聚合,得出宽表

输入表

create table dw_release_exposure(
  release_session varchar, -- comment '投放会话id'
  release_status varchar,  -- comment '投放状态'
  device_num varchar,      -- comment '设备唯一编码'
  device_type varchar,     -- comment '1 android| 2 ios | 9 其他'
  area_code varchar,       -- comment '地区'
  aid varchar,             -- comment '广告id'
  ct date                  -- comment '创建时间'
)with(
type='datahub',
...
);

--dim维度表
--(地区,省市,唯一地区编码,编码和city_id是一一对应的)
create table dim_province(
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  region_id bigint,
  region_name varchar,
 PRIMARY KEY (area_code),
 PERIOD FOR SYSTEM_TIME--定义维表的变化周期。
 )with(
    type= 'rds',
...
);

--(用户设备维度表)
create table dim_device(
  device_type varchar comment '1 android| 2 ios | 9 其他',
  device_name varchar comment '设备名字',
 PRIMARY KEY (device_type),
 PERIOD FOR SYSTEM_TIME--定义维表的变化周期。
)with(
type= 'rds',
...
);

输出表

create table dm_release_exposure(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

业务代码

insert into dm_release_exposure
select
  a.aid,
  count(a.aid) aid_count,
  c.device_name,
  a.area_code,
  b.province_id,
  b.province_name,
  b.city_id,
  b.city_name,
  a.ct
from
dw_release_exposure a
join
dim_province  FOR SYSTEM_TIME AS OF PROCTIME() as b on a.area_code=b.area_code
join
dim_device  FOR SYSTEM_TIME AS OF PROCTIME() as c on a.device_type=c.device_type
group by
a.aid,
a.area_code,
a.ct
;

点击主题

根据业务主题分成投放主题和点击主题,当release_status=2时为点击主题。

输入表

create table ods_release(
  `sid` varchar,           --投放请求ID
  exts varchar,                       --扩展信息
  device_type varchar,     --1 android| 2 ios | 9 其他
  release_status varchar,  --投放状态 1 or 2
  device_num varchar,      --设备唯一编码
  release_session varchar, --投放会话ID
  `date` date              --创建时间
  ) with (
  type ='sls',
...
);

输出表

create table dw_release_click(
  release_session varchar,  -- comment '投放会话id'
  release_status varchar,   -- comment '投放状态'
  device_num varchar,       -- comment '设备唯一编码' 
  device_type varchar,      -- comment '1 android| 2 ios | 9 其他'
  `user_id` varchar,          -- comment '用户id'
  area_code varchar,        -- comment '地区'
  aid varchar,              -- comment '广告id'
  ct date                   -- comment '创建时间'
)with(
type='datahub',
...
);

业务代码

insert into dw_release_click
select
  release_session,
  release_status,
  device_num,
  device_type,
  json_value(exts,'$.user_id') as `user_id`,
  json_value(exts,'$.area_code') as area_code,
  json_value(exts,'$.aid') as aid,
  `date` as ct
from
ods_release
where release_status='2'
;

点击主题关联维度表

点击主题与地区维度表进行聚合,得出宽表

输入表

create table dw_release_click(
  release_session varchar,  -- comment '投放会话id'
  release_status varchar,   -- comment '投放状态'
  device_num varchar,       -- comment '设备唯一编码' 
  device_type varchar,      -- comment '1 android| 2 ios | 9 其他'
  area_code varchar,        -- comment '地区'
  aid varchar,              -- comment '广告id'
  user_id varchar,          -- comment '用户id'
  ct date                   -- comment '创建时间'
)with(
type='datahub',
...
);

--dim维度表
--(地区,省市,唯一地区编码,编码和city_id是一一对应的)
create table dim_province(
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  region_id bigint,
  region_name varchar,
 PRIMARY KEY (area_code),
 PERIOD FOR SYSTEM_TIME--定义维表的变化周期。
 )with(
    type= 'rds',
...
);

--(用户设备维度表)
create table dim_device(
device_type varchar comment '1 android| 2 ios | 9 其他',
device_name varchar comment '设备名字',
 PRIMARY KEY (device_type),
 PERIOD FOR SYSTEM_TIME--定义维表的变化周期。
)with(
type= 'rds',
...
);

输出表

create table dm_release_click(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

业务代码

insert into dm_release_click
select
  a.aid,
  count(a.aid) aid_count,
  c.device_name,
  a.area_code,
  b.province_id,
  b.province_name,
  b.city_id,
  b.city_name,
  a.ct
from
dw_release_click a
join
dim_province  FOR SYSTEM_TIME AS OF PROCTIME() as b
on a.area_code=b.area_code
join
dim_device  FOR SYSTEM_TIME AS OF PROCTIME() as c on
a.device_type=c.device_type
group by
a.aid,
a.area_code,
a.ct
;

场景二:统计投放指标

某个广告在某个省的当天投放量

以aid和province_name分组,统计某个广告在某个省的当天投放量

输入表

create table dm_release_exposure(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

输出表

--某个广告在某个省的当天投放量
CREATE TABLE ads_release_exposure_pro (
    aid                       VARCHAR,
    aid_count                 BIGINT,
    province_name             VARCHAR,
  ct                        DATE,
    primary key(aid,province_name,ct)
) WITH (
    type= 'rds',
...
);

业务代码

insert into ads_release_exposure_pro
select 
  aid,
  sum(aid_count) as aid_count,
  province_name,
  ct
from
dm_release_exposure
group by
aid,
province_name,
ct
;

某个广告在某个市的当天投放量

以aid和city_name分组,统计某个广告在某个市的当天投放量

输入表

create table dm_release_exposure(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

输出表

CREATE TABLE ads_release_exposure_city (
    aid                   VARCHAR,
    aid_count             BIGINT,
    city_name             VARCHAR,
  ct                    DATE,
    primary key(aid,city_name,ct)
) WITH (
    type= 'rds',
...
);

业务代码

insert into ads_release_exposure_city
select 
  aid,
  sum(aid_count) as aid_count,
  city_name,
  ct
from
dm_release_exposure
group by
aid,
city_name,
ct
;

某个广告在某个投放终端的当天投放量

以aid和device_name分组,统计某个广告在某个用户客户端上的当天投放量

输入表

create table dm_release_exposure(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

输出表

CREATE TABLE ads_release_exposure_device (
    aid                     VARCHAR,
    aid_count               BIGINT,
    device_name             VARCHAR,
  ct                      DATE,
    primary key(aid,device_name,ct)
) WITH (
    type= 'rds',
...
);

业务代码

insert into ads_release_exposure_device
select
  aid,
  sum(aid_count),
  device_name,
  ct
from
dm_release_exposure
group by 
aid,
device_name,
ct
;

场景三:统计点击指标

某个广告在某个省的当天点击量

以ct和aid、provice_name分组,统计某个广告在某个省的当天点击量

输入表

create table dm_release_click(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

输出表

CREATE TABLE ads_release_click_pro (
  aid                  VARCHAR,
  aid_count            BIGINT,
  province_name        VARCHAR,
  ct                   DATE,
  primary key(aid,province_name,ct)
) WITH (
  type= 'rds',
...
);

业务代码

insert into ads_release_click_pro
select
  aid,
  count(aid) as aid_count,
  province_name,
  ct
from
dm_release_click
group by
aid,
province_name,
ct
;

某个广告在某个市的当天点击量

以ct和aid、city_name分组,统计某个广告在某个市的当天点击量

输入表

create table dm_release_click(
aid varchar,
aid_count bigint,
device_name varchar,
area_code varchar,
province_id bigint,
province_name varchar,
city_id bigint,
city_name varchar,
ct date
)with(
type='datahub',
...
);

输出表

CREATE TABLE ads_release_click_city (
  aid                  VARCHAR,
  aid_count            BIGINT,
  city_name            VARCHAR,
  ct                   DATE,
  primary key(aid,city_name,ct)
) WITH (
  type= 'rds',
...
);

业务代码

insert into ads_release_click_city
select
aid,
count(aid) as aid_count,
city_name,
ct
from
dm_release_click
group by
aid,
city_name,
ct
;

某个广告在某个投放终端的当天投放量

以aid和device_name分组,统计某个广告在某个用户客户端上的当天投放量

输入表

create table dm_release_click(
  aid varchar,
  aid_count bigint,
  device_name varchar,
  area_code varchar,
  province_id bigint,
  province_name varchar,
  city_id bigint,
  city_name varchar,
  ct date
)with(
type='datahub',
...
);

输出表

CREATE TABLE ads_release_click_device (
  aid                     VARCHAR,
  aid_count               BIGINT,
  device_name             VARCHAR,
  ct                      DATE,
    primary key(aid,device_name,ct)
) WITH (
  type= 'rds',
...
);

业务代码

insert into ads_release_click_device
select
  aid,
  sum(aid_count),
  device_name,
  ct
from
dm_release_exposure
group by
aid,
device_name,
ct
;


场景四:热门广告排行榜

以ct和aid分组,计算当天每个广告的总点击量,对广告ID进行topn排序,得到点击次数最多的三个广告作为最热门广告。根据按天维度的时间字段(ct)和广告ID(aid)分组,计算每天每个广告的总点击量,根据广告ID对点击量进行topn排序,统计得到每天点击次数最多的三个广告,用于数据大屏中的热门广告排行榜。

输入表

create table dm_release_click(
aid varchar,
aid_count bigint,
area_code varchar,
province_id bigint,
province_name varchar,
city_id bigint,
city_name varchar,
ct date
)with(
type='datahub',
...
);

输出表

CREATE TABLE ads_release_click_dtclick (
  Ranking              BIGINT,
    aid                  VARCHAR,
    ct                   DATE,
  aid_count            BIGINT,
  primary key(aid,ct)
) WITH (
    type= 'rds',
...
);

业务代码

INSERT INTO ads_release_click_dtclick
SELECT 
Ranking,
aid,
ct,
aid_count
FROM (
  SELECT *,
     ROW_NUMBER() OVER (PARTITION BY `ct` ORDER BY aid_count desc) AS Ranking
  FROM (
        SELECT 
       `ct` AS `ct`,
        COUNT(aid) AS aid_count,
        aid
        FROM  dm_release_click
        GROUP BY `ct`,aid
    )a
) 
WHERE Ranking <= 3 

实时计算 Flink 版产品交流群

test

阿里云实时计算Flink - 解决方案:
https://developer.aliyun.com/article/765097
阿里云实时计算Flink - 场景案例:
https://ververica.cn/corporate-practice
阿里云实时计算Flink - 产品详情页:
https://www.aliyun.com/product/bigdata/product/sc

相关文章
|
8天前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
186 1
Flink CDC + Hologres高性能数据同步优化实践
|
12天前
|
SQL 存储 调度
基于 Flink 进行增量批计算的探索与实践
基于 Flink 进行增量批计算的探索与实践
基于 Flink 进行增量批计算的探索与实践
|
12天前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
|
12天前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
12天前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
12天前
|
消息中间件 关系型数据库 Kafka
阿里云基于 Flink CDC 的现代数据栈云上实践
阿里云基于 Flink CDC 的现代数据栈云上实践
|
4月前
|
SQL 运维 网络安全
【实践】基于Hologres+Flink搭建GitHub实时数据查询
本文介绍了如何利用Flink和Hologres构建GitHub公开事件数据的实时数仓,并对接BI工具实现数据实时分析。流程包括创建VPC、Hologres、OSS、Flink实例,配置Hologres内部表,通过Flink实时写入数据至Hologres,查询实时数据,以及清理资源等步骤。
|
1月前
|
SQL 消息中间件 Kafka
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
537 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
2月前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
453 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
2月前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
70 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03

相关产品

  • 实时计算 Flink版