使用Kafka Producer写入数据到Datahub

简介: DataHub已经兼容Kafka Producer协议,用户可以使用原生Kafka客户端将数据写入DataHub。

Step By Step

创建Datahub Project&Topic
图片.png

pom.xml

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.10.2.2</version>
        </dependency>

Code Sample

import org.apache.kafka.clients.producer.*;
import java.util.Properties;
import java.util.concurrent.ExecutionException;

public class KafkaProducerDemo {

    public static void main(String args[]) {
        Properties properties = new Properties();

        properties.put("sasl.jaas.config","org.apache.kafka.common.security.plain.PlainLoginModule required\n" +
                "username=\"LTAIOZZg********\"\n" +
                "password=\"v7CjUJCMk7j9aK****************\";");

        properties.put("bootstrap.servers", "dh-cn-hangzhou.aliyuncs.com:9092");
        properties.put("security.protocol", "SASL_SSL");
        properties.put("sasl.mechanism", "PLAIN");
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("compression.type", "lz4");
        String KafkaTopicName = "kafka_project.kafka_topic";
        Producer<String, String> producer = new KafkaProducer<String, String>(properties);
        try {
            ProducerRecord<String, String> record = new ProducerRecord<>(KafkaTopicName, 0, "key_demo", "Hello DataHub!");
            // sync send
            for (int i = 0; i < 10; i++) {
                producer.send(record).get();
                System.out.println(i);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        } finally {
            producer.close();
        }
    }
}

分区抽样查看数据
图片.png

参考链接

兼容Kafka
阿里云Kafka SASL认证Quick Start
阿里云常见参数获取位置

相关文章
|
10月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
448 1
|
消息中间件 存储 分布式计算
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
大数据-53 Kafka 基本架构核心概念 Producer Consumer Broker Topic Partition Offset 基础概念了解
277 4
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
302 1
|
消息中间件 监控 Kafka
实时计算 Flink版产品使用问题之处理Kafka数据顺序时,怎么确保事件的顺序性
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
消息中间件 分布式计算 Kafka
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
176 0
|
vr&ar 图形学 开发者
步入未来科技前沿:全方位解读Unity在VR/AR开发中的应用技巧,带你轻松打造震撼人心的沉浸式虚拟现实与增强现实体验——附详细示例代码与实战指南
【8月更文挑战第31天】虚拟现实(VR)和增强现实(AR)技术正深刻改变生活,从教育、娱乐到医疗、工业,应用广泛。Unity作为强大的游戏开发引擎,适用于构建高质量的VR/AR应用,支持Oculus Rift、HTC Vive、Microsoft HoloLens、ARKit和ARCore等平台。本文将介绍如何使用Unity创建沉浸式虚拟体验,包括设置项目、添加相机、处理用户输入等,并通过具体示例代码展示实现过程。无论是完全沉浸式的VR体验,还是将数字内容叠加到现实世界的AR应用,Unity均提供了所需的一切工具。
685 0
|
开发者 图形学 前端开发
绝招放送:彻底解锁Unity UI系统奥秘,五大步骤教你如何缔造令人惊叹的沉浸式游戏体验,从Canvas到动画,一步一个脚印走向大师级UI设计
【8月更文挑战第31天】随着游戏开发技术的进步,UI成为提升游戏体验的关键。本文探讨如何利用Unity的UI系统创建美观且功能丰富的界面,包括Canvas、UI元素及Event System的使用,并通过具体示例代码展示按钮点击事件及淡入淡出动画的实现过程,助力开发者打造沉浸式的游戏体验。
667 0
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。