NameNode和SecondaryNameNode工作机制

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载Edits和Fsimage到内存中,此时NameNode内存就持有最新的元数据信息。

1.NameNode启动

(1)首次启动需要格式化NameNode,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。

(2)客户端对元数据进行增删改的请求。

(3)NameNode记录操作日志,更新滚动日志。

(4)NameNode在内存中对元数据进行增删改。

2.SecondaryNameNode工作

(1)SecondaryNameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。

(2)SecondaryNameNode请求执行CheckPoint。

(3)NameNode滚动正在写的Edits日志。

(4)将滚动前的编辑日志和镜像文件拷贝到SecondaryNameNode。

(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。

(6)生成新的镜像文件fsimage.chkpoint。

(7)拷贝fsimage.chkpoint到NameNode。

(8)NameNode将fsimage.chkpoint重新命名成fsimage。

   名词解释:

   Fsimage:NameNode内存中元数据序列化后形成的文件。

   Edits:记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。

3.详细工作机制

   NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载Edits和Fsimage到内存中,此时NameNode内存就持有最新的元数据信息。Client开始对NameNode发送元数据的增删改的请求,这些请求的操作首先会被记录到edits.inprogress中(查询元数据的操作不会被记录在Edits中,因为查询操作不会更改元数据信息),如果此时NameNode挂掉,重启后会从Edits中读取元数据的信息。然后,NameNode会在内存中执行元数据的增删改的操作。

   由于Edits中记录的操作会越来越多,Edits文件会越来越大,导致NameNode在启动加载Edits时会很慢,所以需要对Edits和Fsimage进行合并(所谓合并,就是将Edits和Fsimage加载到内存中,照着Edits中的操作一步步执行,最终形成新的Fsimage)。SecondaryNameNode的作用就是帮助NameNode进行Edits和Fsimage的合并工作。

   SecondaryNameNode首先会询问NameNode是否需要CheckPoint(触发CheckPoint需要满足两个条件中的任意一个,定时时间到和Edits中数据写满了)。直接带回NameNode是否检查结果。SecondaryNameNode执行CheckPoint操作,首先会让NameNode滚动Edits并生成一个空的edits.inprogress,滚动Edits的目的是给Edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的Edits和Fsimage会拷贝到SecondaryNameNode的本地,然后将拷贝的Edits和Fsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给NameNode,重命名为Fsimage后替换掉原来的Fsimage。NameNode在启动时就只需要加载之前未合并的Edits和Fsimage即可,因为合并过的Edits中的元数据信息已经被记录在Fsimage中。
         
         本文来源于:奈学开发者社区 ,如有侵权请联系我删除
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
5月前
|
运维 分布式计算 监控
NameNode如何处理DataNode故障?
【8月更文挑战第31天】
204 1
|
7月前
|
存储 分布式计算 监控
Hadoop集群添加新的DataNode
【6月更文挑战第19天】
241 1
|
存储
15 DATANODE的工作机制
15 DATANODE的工作机制
119 0
|
8月前
|
存储 分布式计算 监控
Hadoop的NameNode的监控与副本管理
【4月更文挑战第15天】NameNode是Hadoop HDFS的关键组件,负责元数据管理和监控,确保数据安全、可靠和性能。监控包括NameNode的状态、资源使用和性能,以保证集群稳定性。NameNode在副本管理中负责副本创建、分布、维护和删除,确保数据冗余和容错性。有效的监控和副本管理策略对Hadoop集群的高效运行至关重要。
137 2
|
8月前
|
存储 分布式计算 Hadoop
HDFS中的NameNode和DataNode的作用是什么?它们之间的通信方式是什么?
HDFS中的NameNode和DataNode的作用是什么?它们之间的通信方式是什么?
895 0
|
8月前
|
存储 分布式计算 Hadoop
NameNode和DataNode在HDFS中的作用是什么?
NameNode和DataNode在HDFS中的作用是什么?
503 0
|
存储 分布式计算 Hadoop
HDFS Namenode挂掉后分析解决
HDFS Namenode挂掉后分析解决
297 1
|
存储 数据管理
14 NAMENODE的工作机制
14 NAMENODE的工作机制
90 0
|
存储 缓存 运维
13 HDFS的工作机制
13 HDFS的工作机制
59 0
|
机器学习/深度学习 缓存 分布式计算
Hadoop基础学习---4、HDFS写、读数据流程、NameNode和SecondaryNameNode、DataNode
Hadoop基础学习---4、HDFS写、读数据流程、NameNode和SecondaryNameNode、DataNode