边缘人工智能有助于增强物联网优势

简介: 在当今的数字世界,人工智能和物联网正在深刻改变我们生活的方方面面。连接到网络的物联网设备数量正以惊人的速度激增。根据国际数据公司(IDC)的数据,到2025年,联网设备将超过410亿部。

https-_specials-images.forbesimg.com_dam_imageserve_940062414_960x0.jpg-fitscale.jpg

在当今的数字世界,人工智能和物联网正在深刻改变我们生活的方方面面。连接到网络的物联网设备数量正以惊人的速度激增。根据国际数据公司(IDC)的数据,到2025年,联网设备将超过410亿部。


随着连接设备数量的增加,流回云的数据量也呈指数增长。最后,将所有这些数据泵回云进行处理并不是可扩展的模型。在云上处理所有这些数据将使网络带宽需求达到极限。已有的数据中心发现很难保证传输速率和响应时间。


我们必须在边缘进行更多的数据处理。这是下一个有待开发的前沿领域,它有巨大的潜力在边缘计算世界推动业务发展。


将智能带入边缘


数据是新的石油,但具有讽刺意味的是,尽管它们周围都有千兆字节的物联网数据,但很少有公司能够从中获取价值。这是因为真正的价值在于通过理解能够预测未来趋势的模式,将来自不同物联网设备的数据集组合起来。这就是边缘人工智能在恢复数据真实价值方面具有巨大潜力的地方。


边缘需要更多的处理能力。这将使企业能够在边缘运行AI模型,从而为边缘带来更多智能。


如今,许多边缘设备都具有内置的计算能力。许多物联网边缘设备具有GPU,TPU或VPU。例如,某些高端安全摄像机现在具有GPU卡,这使它们能够在边缘本身上运行基于AI的图像识别模型,而不必将所有高清视频发送回云中进行处理。将处理移至边缘可确保更好的响应时间并减少带宽使用。


举一个实地的例子。在拥有1000个启用边缘GPU的摄像头的石油和天然气精炼厂中,人们希望根据模型试图检测的位置和异常情况在不同的摄像头节点上部署不同的AI模型。石油和天然气精炼厂内的红色区域是由于H2S气体泄漏而导致死亡的机率很高的区域。因此,进入红色区域的人们必须穿戴防护装备。聚焦在红色区域上的摄像机可能会检测到HSE不合规,例如进入红色区域时未佩戴紧急呼吸装置(EBA)并触发实时警报,从而拯救了生命。


边缘上的AI将有助于更好地利用我们的数据。边缘AI的用途广泛,可广泛应用于各个领域,包括医疗保健中的患者监控,评估农业作物的健康状况,在自然灾害期间识别和营救受伤的人们,等等。


在边缘管理AI生命周期


在边缘运行AI模型必须经过深思熟虑。一旦将AI模型加载到边缘,需要对其性能进行持续监控,并针对各种情况进行优化。


物联网世界中边缘设备的异构性质面临着一系列挑战。远程部署模型和监视边缘是另一个具有巨大潜力的大领域。必须拥有一种强大的机制来远程部署和微调AI模性能型。密切注意硬件的运行状况也很重要。


持续监控这些模型的性能也是一个很高的要求。在边缘上管理AI模型的连续部署、调试和微调也是很少有公司真正取得进展的领域。


对于刚刚开始在边缘利用人工智能功能的企业,我建议大家记住以下几点:


1)选择一个可以为业务带来直接好处的合适用例很重要。


2)选择一个好的工具来自动化边缘服务的部署和监视过程。Eclipse Foundation的ioFog项目正在这个领域掀起波澜。


3)在选择边缘硬件时,请记住根据未来的需求和扩展硬件功能的能力,制定一个三到五年的路线图。


边缘安全


边缘安全是另一个不可忽视的重要因素。使处理更接近边缘会给边缘内部和周围带来更大的压力。边缘安全必须是多管齐下的策略,以确保硬件和软件堆栈的安全。您需要保持警惕,以检测进入边缘网络的恶意节点。一旦检测到恶意节点,就需要将其隔离,并且不允许其进入边缘网络。


一种方法是利用硬件的信任根来确保边缘计算系统的运行。具有运行时应用程序验证和授权,以防止流氓应用程序。从设备到云的数据需要信任。完全控制数据流,确保数据只到达授权节点。


总结


人工智能的优势是下一个有待开发的大金矿,具有巨大的潜力为企业带来真正的价值。物联网世界中处于边缘的人工智能将有助于以低成本效益和低延迟的方式为业务提供智能实时决策。


原文链接
相关实践学习
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
11月前
|
存储 Java 索引
Java快速入门之数组、方法
### Java快速入门之数组与方法简介 #### 一、数组 数组是一种容器,用于存储同种数据类型的多个值。定义数组时需指定数据类型,如`int[]`只能存储整数。数组的初始化分为静态和动态两种: - **静态初始化**:直接指定元素,系统自动计算长度,如`int[] arr = {1, 2, 3};` - **动态初始化**:手动指定长度,系统给定默认值,如`int[] arr = new int[3];` 数组访问通过索引完成,索引从0开始,最大索引为`数组.length - 1`。遍历数组常用`for`循环。常见操作包括求和、找最值、统计特定条件元素等。
|
1天前
|
数据采集 人工智能 安全
|
10天前
|
云安全 监控 安全
|
2天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
882 150
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1620 8
|
6天前
|
人工智能 前端开发 文件存储
星哥带你玩飞牛NAS-12:开源笔记的进化之路,效率玩家的新选择
星哥带你玩转飞牛NAS,部署开源笔记TriliumNext!支持树状知识库、多端同步、AI摘要与代码高亮,数据自主可控,打造个人“第二大脑”。高效玩家的新选择,轻松搭建专属知识管理体系。
362 152
|
7天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
588 152
|
9天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
548 13

相关产品

  • 物联网平台