通过spark.default.parallelism谈Spark并行度

简介: 本篇文章首先通过大家熟知的一个参数spark.default.parallelism为引,聊一聊Spark并行度都由哪些因素决定?

本篇文章首先通过大家熟知的一个参数spark.default.parallelism为引,聊一聊Spark并行度都由哪些因素决定?

W1.jpg

上图是spark官网关于spark.default.parallelism参数说明:

1、对于reduceByKey和join这些分布式shuffle算子操作,取决于它的父RDD中分区数的最大值

2、对于没有父RDD的的算子,比如parallelize,依赖于集群管理器:

1)本地模式:取决于本地机器的核数
2)如果集群管理器是Mesos,则为8
3)其他的:对比所有executor上总核数与2比较,哪个大是哪个

当然上面这些都是默认值,如果我们自己设置了分区数,情况就会有所变化,直接看源码【查看org.apache.spark.Partitioner源码defaultPartitioner方法】

W2.jpg

你会发现,如果你使用reducebykey、groupByKey等这些带shuffle的算子,建议不要通过上述方法让程序内部去推测。完全可以通过传入一个确定的分区数或者自己实现一个分区器来做处理。当然这个确定的分区数也不是贸贸然设定的,需要结合你的业务场景根据实际情况来确定多少合适。比如shuffle时流经的数据量,这个就要结合分区数和shuffle总数据量来做适当调整,处理不好的结果极有可能导致数据倾斜等问题...

笔者再次建议,学习Spark一定要多看Spark官网http://spark.apache.org/,并且多看源码

相关文章
|
8月前
|
分布式计算 Hadoop 大数据
Spark 【分区与并行度】
Spark 【分区与并行度】
|
SQL 分布式计算 大数据
Spark 资源和数据并行度优化分析2 | 学习笔记
快速学习 Spark 资源和数据并行度优化分析2
187 0
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
168 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
80 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
54 0
|
3月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
110 0
|
2月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
112 6
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
139 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
100 1
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
78 1