如何强制删除阿里云日志服务Project

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 很多其它服务关联创建的日志服务Project,直接在日志服务控制台删除,即使是通过主账户删除,也会提示没有权限。下面提供一种通过CloudShell 强制删除日志服务Project的方法。

作者:俏巴

概述

很多其它服务关联创建的日志服务Project,直接在日志服务控制台删除,即使是通过主账户删除,也会提示没有权限。下面提供一种通过CloudShell 强制删除日志服务Project的方法。

Step By Step

重要提示: 删除项目为永久删除,不支持恢复删除项目及内容,所以删除前请务必确认确实需要删除。

1、主账户删除提示权限不足

image.png

2、删除指令

2.1 删除指令模板

aliyunlog log delete_project --project_name=${projectName} --region-endpoint=${regionId}.log.aliyuncs.com

2.2 删除示例:例如要删除杭州区域,项目名称为:tarodemo 区域为:cn-hangzhou

aliyunlog log delete_project --project_name=tarodemo --region-endpoint=cn-hangzhou.log.aliyuncs.com

3、Cloud Shell执行指令

image.png

image.png

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
4月前
|
自然语言处理 监控 安全
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
阿里云可观测官方发布了Observable MCP Server,提供了一系列访问阿里云可观测各产品的工具能力,包含阿里云日志服务SLS、阿里云应用实时监控服务ARMS等,支持用户通过自然语言形式查询
527 0
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
|
6月前
|
存储 消息中间件 缓存
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
272 1
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
|
6月前
|
域名解析 应用服务中间件 网络安全
阿里云个人博客外网访问中断应急指南:从安全组到日志的七步排查法
1. 检查安全组配置:确认阿里云安全组已开放HTTP/HTTPS端口,添加规则允许目标端口(如80/443),授权对象设为`0.0.0.0/0`。 2. 本地防火墙设置:确保服务器防火墙未阻止外部流量,Windows启用入站规则,Linux检查iptables或临时关闭防火墙测试。 3. 验证Web服务状态:检查Apache/Nginx/IIS是否运行并监听所有IP,使用命令行工具确认监听状态。 4. 测试网络连通性:使用外部工具和内网工具测试服务器端口是否开放,排除本地可访问但外网不可的问题。 5. 排查DNS解析:确认域名A记录指向正确公网IP,使用`ping/nslookup`验证解析正
229 2
|
6月前
|
SQL 存储 自然语言处理
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
129 1
|
6月前
|
存储 监控 安全
网络安全视角:从地域到账号的阿里云日志审计实践
网络安全视角:从地域到账号的阿里云日志审计实践
140 0
|
7月前
|
SQL 分布式计算 Serverless
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
167 0
|
4月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
615 54
|
10月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
2959 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
9月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
257 9