并查集及其应用

简介: 并查集顾名思义就是有“合并集合”和“查找集合中的元素”两种操作的关于数据结构的一种算法。 算法 用集合中的某个元素来代表这个集合,该元素称为集合的代表元。一个集合内的所有元素组织成以代表元为根的树形结构。

并查集顾名思义就是有“合并集合”和“查找集合中的元素”两种操作的关于数据结构的一种算法。

算法

用集合中的某个元素来代表这个集合,该元素称为集合的代表元。
一个集合内的所有元素组织成以代表元为根的树形结构。
对于每一个元素 parent[x]指向x在树形结构上的父亲节点。如果x是根节点,则令parent[x] = x。
对于查找操作,假设需要确定x所在的的集合,也就是确定集合的代表元。可以沿着parent[x]不断在树形结构中向上移动,直到到达根节点。

判断两个元素是否属于同一集合,只需要看他们的代表元是否相同即可。

路径压缩

为了加快查找速度,查找时将x到根节点路径上的所有点的parent设为根节点,该优化方法称为压缩路径。

使用该优化后,平均复杂度可视为Ackerman函数的反函数,实际应用中可粗略认为其是一个常数。

用途

1、维护无向图的连通性。支持判断两个点是否在同一连通块内。
2、判断增加一条边是否会产生环:用在求解最小生成树的Kruskal算法里。

代码实现

LeetCode 547 朋友圈

班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。
给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果Mi = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。

使用并查集实现:

public class Union {

    class UF {
        // 连通分量个数
        private int count;
        // 存储一棵树
        private int[] parent;
        // 记录树的“重量”
        private int[] size;

        public UF(int n) {
            this.count = n;
            parent = new int[n];
            size = new int[n];
            for (int i = 0; i < n; i++) {
                parent[i] = i;
                size[i] = 1;
            }
        }

        public void union(int p, int q) {
            int rootP = find(p);
            int rootQ = find(q);
            if (rootP == rootQ)
                return;

            // 小树接到大树下面,较平衡
            if (size[rootP] > size[rootQ]) {
                parent[rootQ] = rootP;
                size[rootP] += size[rootQ];
            } else {
                parent[rootP] = rootQ;
                size[rootQ] += size[rootP];
            }
            count--;
        }

        public boolean connected(int p, int q) {
            int rootP = find(p);
            int rootQ = find(q);
            return rootP == rootQ;
        }

        private int find(int x) {
            while (parent[x] != x) {
                // 进行路径压缩
                parent[x] = parent[parent[x]];
                x = parent[x];
            }
            return x;
        }

        public int count() {
            return count;
        }
    }

    public int findCircleNum(int[][] M) {
        int n = M.length;
        UF uf = new UF(n);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (M[i][j] == 1)
                    uf.union(i, j);
            }
        }

        return uf.count();
    }

}

关于并查集的图文解说

为了解释并查集的原理,下面的内容来自网友博客。

话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

image

下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x)                    //查找我(x)的掌门
{
    int r=x;                      //委托 r 去找掌门
    while (pre[r ]!=r)           //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)
    r=pre[r ] ;                 // r 就接着找他的上级,直到找到掌门为止。
    return  r ;                //掌门驾到~~~
}

再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)          //我想让虚竹和周芷若做朋友
{
    int fx=find(x),fy=find(y);         //虚竹的老大是玄慈,芷若MM的老大是灭绝
    if(fx!=fy)                         //玄慈和灭绝显然不是同一个人
    pre[fx ]=fy;                       //方丈只好委委屈屈地当了师太的手下啦
}

路径压缩,就是调整掌门结构,都变成2级关系

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

image

目录
相关文章
|
8月前
|
算法
并查集,路径压缩
并查集,路径压缩
49 0
|
8月前
并查集。。
并查集。。
39 0
并查集及其应用
并查集及其应用
69 0
|
8月前
|
算法 测试技术
并查集算法
并查集算法
|
8月前
|
机器学习/深度学习
并查集(UnionFind)总结
并查集(UnionFind)总结
73 0
|
存储 算法 iOS开发
并查集详解及应用
并查集详解及应用
3855 0
|
存储 Python
【23. 并查集】
**用途**: - 将俩个集合合并 - 询问俩个元素是否在一个集合当中 **基本原理**: - 每个集合用一棵树来表示。树根的编号就是整个集合的编号,每个节点存储它的父节点,`p[x]`表示x的父节点。
124 0
【23. 并查集】