分布式架构,刚性事务-2PC必须注意的问题及3PC详细解

简介: 2PC必须注意的问题 咱们上文介绍了分布式事务的常见方案、类型划分、2PC的起源和流程。但是不幸的是2PC还是存在几个问题: 1、全流程的同步阻塞:不管是第一阶段还是第二阶段,所有参与节点都是事务阻塞型。

2PC必须注意的问题

咱们上文介绍了分布式事务的常见方案、类型划分、2PC的起源和流程。但是不幸的是2PC还是存在几个问题:

1、全流程的同步阻塞:不管是第一阶段还是第二阶段,所有参与节点都是事务阻塞型。当参与者占有公共资源时,其他第三方访问公共资源可能不得不处于阻塞状态。

2、TM单点故障:由于全流程依赖TM的协调,一旦TM发生故障。参与者会一直阻塞下去。尤其在第二阶段,TM发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。所有参与者必须等待TM重新上线(TM重新选举)后才能继续工作。

3、TM脑裂引起数据不一致:在第二阶段中,当TM向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中TM发生了故障,这会导致只有一部分参与者接受到了commit请求。而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据不一致性的现象。

4、TM脑裂引起事务状态不确定:TM再发出commit消息之后宕机,而接收到这条消息的参与者同时也宕机了。那么即使通过选举协议产生了新的TM,这条事务的状态也是不确定的,没人知道事务是否被已经提交。

3PC详解来啦

一、3PC定义

2PC是CP的刚性事务,追求数据强一致性。但是通过我们上面分析可以得知TM脑裂可能造成数据不一致和事务状态不确定问题。无法达到CP的完美状态。因此业界就出现了3PC,用来处理TM脑裂引起的数据不一致和事务状态不确定问题。

因为3PC是为彻底解决的2PC的数据不一致和事务状态不确定问题而出现。根据这一个前提,加上笔者对3PC的理解,总结出3PC的注释事项:

1)3PC确保任何分支下的数据一致性
2)3PC确保任何分支最多3次握手得到最终结果(超时机制)
3)RM超时后的事务状态必须从TM获取。2PC只有TM的超时机制,3PC新增了参与者(RM)的超时机制,一方面辅助解决了2PC的事务/事务问题,还能降低一定的同步阻塞问题。因为TM、RM双向超时机制,所以维基百科对3PC定义为“非阻塞”协议。

二、优雅的3PC流程

3PC 分成3个阶段:CanCommit(准备阶段)、PreCommit(对齐阶段)、DoCommit(提交阶段);笔者根据资料对3阶段进行比较合适的翻译,非官方翻译。

准备阶段:跟2PC的表决阶段很类似,TM向参与者发送commit请求,参与者如果可以提交就返回Yes,否则返回No,询问超时默认参与者为No。唯一差别在于SQL层面:准备阶段只做了SQL处理,并未记录事务日志(Undo 和Redo)

对齐阶段:TM 和 各个参与者对齐事务状态,TM 通知各个参与者事务最终状态,各个参与者如果一致未收到事务对齐通知,会在超时后从TM反查事务状态实现事务状态对齐。在SQL层面:事务状态对齐后,记录事务日志(Undo 和Redo)

提交阶段:该阶段进行真正的事务提交。根据第二阶段得到的事务状态结果,各参与者根据TM的通知命令进行提交/abort或者超时后自动提交/abort。

下图是笔者根据资料和个人理解整理出来的一个自认为比较合理的3PC流程图:

3PC_

三、总结

或许3PC也不完美,网上有好多各版本的3PC的流程图和解释。有的甚至还存在明显的问题,为3PC的理解带来了更大的苦难。身为架构师,就需要去追寻本质,了解3PC的前世今生,抓住3PC的本质,就很容易理解3PC了。

对于数据一致性,Google Chubby的作者Mike Burrows说过:“there is only one consensus protocol, and that’s Paxos” – all other approaches are just broken versions of Paxos。”

译文:世上只有一种一致性算法,那就是Paxos,所有其他一致性算法都是Paxos算法的不完整版。

相关文章
|
3月前
|
人工智能 Kubernetes 数据可视化
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
本文回顾了一次关键词监测任务在容器集群中失效的全过程,分析了中转IP复用、调度节奏和异常处理等隐性风险,并提出通过解耦架构、动态IP分发和行为模拟优化采集策略,最终实现稳定高效的数据抓取与分析。
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
|
10天前
|
缓存 Cloud Native 中间件
《聊聊分布式》从单体到分布式:电商系统架构演进之路
本文系统阐述了电商平台从单体到分布式架构的演进历程,剖析了单体架构的局限性与分布式架构的优势,结合淘宝、京东等真实案例,深入探讨了服务拆分、数据库分片、中间件体系等关键技术实践,并总结了渐进式迁移策略与核心经验,为大型应用架构升级提供了全面参考。
|
26天前
|
存储 NoSQL 前端开发
【赵渝强老师】MongoDB的分布式存储架构
MongoDB分片通过将数据分布到多台服务器,实现海量数据的高效存储与读写。其架构包含路由、配置服务器和分片服务器,支持水平扩展,结合复制集保障高可用性,适用于大规模生产环境。
169 1
|
4月前
|
监控 算法 关系型数据库
分布式事务难题终结:Seata+DRDS全局事务一致性架构设计
在分布式系统中,CAP定理限制了可用性、一致性与分区容错的三者兼得,尤其在网络分区时需做出取舍。为应对这一挑战,最终一致性方案成为常见选择。以电商订单系统为例,微服务化后,原本的本地事务演变为跨数据库的分布式事务,暴露出全局锁失效、事务边界模糊及协议差异等问题。本文深入探讨了基于 Seata 与 DRDS 的分布式事务解决方案,涵盖 AT 模式实践、分片策略优化、典型问题处理、性能调优及高级特性实现,结合实际业务场景提供可落地的技术路径与架构设计原则。通过压测验证,该方案在事务延迟、TPS 及失败率等方面均取得显著优化效果。
289 61
|
5月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
1786 57
|
9月前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
637 8
|
5月前
|
消息中间件 缓存 算法
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
293 0
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
|
7月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
566 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
7月前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
9月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
890 41

热门文章

最新文章