什么是脏数据?怎样用箱形图分析异常值?终于有人讲明白了

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 导读:数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础。没有可信的数据,数据挖掘构建的模型将是空中楼阁。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

导读:数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础。没有可信的数据,数据挖掘构建的模型将是空中楼阁。

数据质量分析的主要任务是检查原始数据中是否存在脏数据。脏数据一般是指不符合要求以及不能直接进行相应分析的数据。在常见的数据挖掘工作中,脏数据包括:缺失值、异常值、不一致的值、重复数据及含有特殊符号(如#、¥、*)的数据。

本文将主要对数据中的缺失值、异常值和一致性进行分析。

158A78BC_8E56_4eb8_98CD_B2F368E68EDB

01 缺失值分析

数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果不准确。下面从缺失值产生的原因及影响等方面展开分析。

1. 缺失值产生的原因

缺失值产生的原因主要有以下3点:

有些信息暂时无法获取,或者获取信息的代价太大。
有些信息是被遗漏的。可能是因为输入时认为该信息不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备故障、存储介质故障、传输媒体故障等非人为原因而丢失。
属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。

2. 缺失值的影响

缺失值会产生以下的影响:

数据挖掘建模将丢失大量的有用信息。
数据挖掘模型所表现出的不确定性更加显著,模型中蕴含的规律更难把握。
包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。

3. 缺失值的分析

对缺失值的分析主要从以下两方面进行:

使用简单的统计分析,可以得到含有缺失值的属性的个数以及每个属性的未缺失数、缺失数与缺失率等。
对于缺失值的处理,从总体上来说分为删除存在缺失值的记录、对可能值进行插补和不处理3种情况。

E6AE4429_AA5C_44c4_B7AF_2F78DB85B8AF

02 异常值分析

异常值分析是检验数据是否有录入错误,是否含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地将异常值放入数据的计算分析过程中,会对结果造成不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。

异常值是指样本中的个别值,其数值明显偏离其他的观测值。异常值也称为离群点,异常值分析也称为离群点分析。

  1. 简单统计量分析

在进行异常值分析时,可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理范围。如客户年龄的最大值为199岁,则判断该变量的取值存在异常。

  1. 3σ原则

如果数据服从正态分布,在3σ原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3σ之外的值出现的概率为P(|x-μ|>3σ)≤0.003,属于极个别的小概率事件。

如果数据不服从正态分布,也可以用远离平均值的标准差倍数来描述。

  1. 箱型图分析

箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL -1.5IQR或大于QU +1.5IQR的值。

QL称为下四分位数,表示全部观察值中有四分之一的数据取值比它小;
QU称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;
IQR称为四分位数间距,是上四分位数QU与下四分位数QL之差,其间包含了全部观察值的一半。

箱型图依据实际数据绘制,对数据没有任何限制性要求,如服从某种特定的分布形式,它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会严重扰动四分位数,所以异常值不能对这个标准施加影响。

由此可见,箱型图识别异常值的结果比较客观,在识别异常值方面有一定的优越性,如图3-1所示。

E555866B_635B_4a21_AC9B_20DEF52BEE11

D9CD8088_01BF_4eb0_8388_5CD437523216

import pandas as pd
catering_sale = '../data/catering_sale.xls'  # 餐饮数据
data = pd.read_excel(catering_sale, index_col='日期')
# 读取数据,指定“日期”列为索引列
print(data.describe())

代码清单3-1的运行结果如下:

           销量
count   200.000000
mean   2755.214700
std     751.029772
min      22.000000
25%    2451.975000
50%    2655.850000
75%    3026.125000
max    9106.440000

其中count是非空值数,通过len(data)可以知道数据记录为201条,因此缺失值数为1。另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。

更直观地展示这些数据并且可以检测异常值的方法是使用箱型图。其Python检测代码如代码清单3-2所示。

代码清单3-2 餐饮日销额数据异常值检测

import matplotlib.pyplot as plt# 导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei']# 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

plt.figure()  # 建立图像
p = data.boxplot(return_type='dict')  # 画箱型图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata()  # 'flies'即为异常值的标签
y = p['fliers'][0].get_ydata()
y.sort()  # 从小到大排序,该方法直接改变原对象
'''
用annotate添加注释
其中有些相近的点,注释会出现重叠,难以看清,需要一些技巧来控制
以下参数都是经过调试的,需要具体问题具体调试
'''
for i in range(len(x)):
    if i>0:
        plt.annotate(y[i], xy=(x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]), y[i]))
    else:
        plt.annotate(y[i], xy=(x[i],y[i]), xytext=(x[i]+0.08,y[i]))

plt.show()  # 展示箱型图

C8FDFA17_430B_4dbe_80C4_F66B6E331490

从图3-2可以看出,箱型图中超过上下界的7个日销售额数据可能为异常值。结合具体业务可以把865.0、4060.3、4065.2归为正常值,将22.0、51.0、60.0、6607.4、9106.44归为异常值。最后确定过滤规则为日销额在400元以下或5000元以上则属于异常数据,编写过滤程序,进行后续处理。

03 一致性分析

数据不一致性是指数据的矛盾性、不相容性。直接对不一致的数据进行挖掘,可能会产生与实际相违背的挖掘结果。

在数据挖掘过程中,不一致数据的产生主要发生在数据集成的过程中,可能是由于被挖掘数据来自于不同的数据源、对于重复存放的数据未能进行一致性更新造成的。

例如,两张表中都存储了用户的电话号码,但在用户的电话号码发生改变时只更新了一张表中的数据,那么这两张表中就有了不一致的数据。

关于作者:张良均,资深大数据挖掘与分析专家、模式识别专家、AI技术专家。有10余年大数据挖掘与分析经验,擅长Python、R、Hadoop、Matlab等技术实现的数据挖掘与分析,对机器学习等AI技术驱动的数据分析也有深入研究。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-29
本文作者: 张良均 谭立云
本文来自:“大数据DT 微信公众号”,了解相关信息可以关注“大数据DT

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
12月前
|
Android开发 开发者 容器
flutter:&UI布局 (六)
本文档介绍了Flutter中的UI布局方式,包括线性布局(如Column和Row)、非线性布局(如Stack、Flex、Positioned)以及Wrap布局等。通过具体示例代码展示了如何使用这些布局组件来构建灵活多变的用户界面,例如使用Column垂直排列文本、使用Stack叠加组件、以及利用Wrap实现自动换行的按钮布局等。
230 1
|
12月前
|
存储 C语言
C语言:一维数组的不初始化、部分初始化、完全初始化的不同点
C语言中一维数组的初始化有三种情况:不初始化时,数组元素的值是随机的;部分初始化时,未指定的元素会被自动赋值为0;完全初始化时,所有元素都被赋予了初始值。
1200 2
|
12月前
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
303 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
12月前
|
Java Maven Kotlin
vertx的学习总结7之用kotlin 与vertx搞一个简单的http
本文介绍了如何使用Kotlin和Vert.x创建一个简单的HTTP服务器,包括设置路由、处理GET和POST请求,以及如何使用HTML表单发送数据。
155 2
vertx的学习总结7之用kotlin 与vertx搞一个简单的http
|
缓存 监控 算法
软件测试中的性能瓶颈定位与优化策略
性能瓶颈,如同隐藏在系统深处的“拦路虎”,悄无声息地制约着软件的表现。本文将揭示如何通过一系列科学方法,识别并消除这些障碍,从而显著提升软件性能,确保用户享受到流畅无阻的数字体验。
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
264 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
机器学习/深度学习 人工智能 安全
人工智能浪潮下的隐私保护:挑战与策略
【8月更文挑战第13天】在数字化时代,人工智能技术飞速发展,给人们的生活带来了极大的便利。然而,随之而来的个人隐私泄露问题也日益严重。本文将探讨在AI技术广泛应用的背景下,如何有效保护个人隐私,包括面临的主要挑战和可能的解决策略。
|
存储 NoSQL 关系型数据库
深入浅出Redis(十二):Redis的排序命令Sort
深入浅出Redis(十二):Redis的排序命令Sort
|
存储 弹性计算 安全
《阿里云存储手册》——存储容量单位包SCU
《阿里云存储手册》——存储容量单位包SCU
420 0
|
安全 算法 Java
Java 并发编程 面试题及答案整理,最新面试题
Java 并发编程 面试题及答案整理,最新面试题
335 0