数据结构之自建算法库——单链表

简介:   本文针对数据结构基础系列网络课程(2):线性表中第10课时单链表基本操作的实现,建立单链表数据存储结构基本操作的算法库。  按照“0207将算法变程序”[视频]部分建议的方法,建设自己的专业基础设施算法库。  单链表算法库算法库采用程序的多文件组织形式,包括两个文件:      1.头文件:linklist.h,包含定义顺序表数据结构的代码、宏定义、要实现算法

  本文针对数据结构基础系列网络课程(2):线性表中第10课时单链表基本操作的实现,建立单链表数据存储结构基本操作的算法库。

  按照“0207将算法变程序”[视频]部分建议的方法,建设自己的专业基础设施算法库。

  单链表算法库算法库采用程序的多文件组织形式,包括两个文件:
  
  1.头文件:linklist.h,包含定义顺序表数据结构的代码、宏定义、要实现算法的函数的声明;

#ifndef LINKLIST_H_INCLUDED
#define LINKLIST_H_INCLUDED

typedef int ElemType;
typedef struct LNode        //定义单链表结点类型
{
    ElemType data;
    struct LNode *next;     //指向后继结点
}LinkList;
void CreateListF(LinkList *&L,ElemType a[],int n);//头插法建立单链表
void CreateListR(LinkList *&L,ElemType a[],int n);//尾插法建立单链表
void InitList(LinkList *&L);  //初始化线性表
void DestroyList(LinkList *&L);  //销毁线性表
bool ListEmpty(LinkList *L);  //判断线性表是否为空
int ListLength(LinkList *L);  //求线性表长度
void DispList(LinkList *L);  //输出线性表
bool GetElem(LinkList *L,int i,ElemType &e);  //求线性表某个数据元素值
int LocateElem(LinkList *L,ElemType e);  //按元素值查找
bool ListInsert(LinkList *&L,int i,ElemType e);  //插入数据元素
bool ListDelete(LinkList *&L,int i,ElemType &e);  //删除数据元素

#endif // LINKLIST_H_INCLUDED

  2.源文件:linklist.cpp,包含实现各种算法的函数的定义

#include <stdio.h>
#include <malloc.h>
#include "linklist.h"


void CreateListF(LinkList *&L,ElemType a[],int n)//头插法建立单链表
{
    LinkList *s;
    int i;
    L=(LinkList *)malloc(sizeof(LinkList));     //创建头结点
    L->next=NULL;
    for (i=0; i<n; i++)
    {
        s=(LinkList *)malloc(sizeof(LinkList));//创建新结点
        s->data=a[i];
        s->next=L->next;            //将*s插在原开始结点之前,头结点之后
        L->next=s;
    }
}

void CreateListR(LinkList *&L,ElemType a[],int n)//尾插法建立单链表
{
    LinkList *s,*r;
    int i;
    L=(LinkList *)malloc(sizeof(LinkList));     //创建头结点
    L->next=NULL;
    r=L;                    //r始终指向终端结点,开始时指向头结点
    for (i=0; i<n; i++)
    {
        s=(LinkList *)malloc(sizeof(LinkList));//创建新结点
        s->data=a[i];
        r->next=s;          //将*s插入*r之后
        r=s;
    }
    r->next=NULL;           //终端结点next域置为NULL
}

void InitList(LinkList *&L)
{
    L=(LinkList *)malloc(sizeof(LinkList));     //创建头结点
    L->next=NULL;
}
void DestroyList(LinkList *&L)
{
    LinkList *p=L,*q=p->next;
    while (q!=NULL)
    {
        free(p);
        p=q;
        q=p->next;
    }
    free(p);    //此时q为NULL,p指向尾结点,释放它
}
bool ListEmpty(LinkList *L)
{
    return(L->next==NULL);
}
int ListLength(LinkList *L)
{
    LinkList *p=L;
    int i=0;
    while (p->next!=NULL)
    {
        i++;
        p=p->next;
    }
    return(i);
}
void DispList(LinkList *L)
{
    LinkList *p=L->next;
    while (p!=NULL)
    {
        printf("%d ",p->data);
        p=p->next;
    }
    printf("\n");
}
bool GetElem(LinkList *L,int i,ElemType &e)
{
    int j=0;
    LinkList *p=L;
    while (j<i && p!=NULL)
    {
        j++;
        p=p->next;
    }
    if (p==NULL)            //不存在第i个数据结点
        return false;
    else                    //存在第i个数据结点
    {
        e=p->data;
        return true;
    }
}
int LocateElem(LinkList *L,ElemType e)
{
    LinkList *p=L->next;
    int n=1;
    while (p!=NULL && p->data!=e)
    {
        p=p->next;
        n++;
    }
    if (p==NULL)
        return(0);
    else
        return(n);
}
bool ListInsert(LinkList *&L,int i,ElemType e)
{
    int j=0;
    LinkList *p=L,*s;
    while (j<i-1 && p!=NULL) //查找第i-1个结点
    {
        j++;
        p=p->next;
    }
    if (p==NULL)    //未找到位序为i-1的结点
        return false;
    else            //找到位序为i-1的结点*p
    {
        s=(LinkList *)malloc(sizeof(LinkList));//创建新结点*s
        s->data=e;
        s->next=p->next;                        //将*s插入到*p之后
        p->next=s;
        return true;
    }
}
bool ListDelete(LinkList *&L,int i,ElemType &e)
{
    int j=0;
    LinkList *p=L,*q;
    while (j<i-1 && p!=NULL)    //查找第i-1个结点
    {
        j++;
        p=p->next;
    }
    if (p==NULL)                //未找到位序为i-1的结点
        return false;
    else                        //找到位序为i-1的结点*p
    {
        q=p->next;              //q指向要删除的结点
        if (q==NULL)
            return false;           //若不存在第i个结点,返回false
        e=q->data;
        p->next=q->next;        //从单链表中删除*q结点
        free(q);                //释放*q结点
        return true;
    }
}

  3.在建立算法库过程中,为了完成测试,再同一项目(project)中建立一个源文件(如main.cpp),编制main函数,完成相关的测试工作。
  测试工作可以采用“渐进”的思路,每次涉及的函数应该尽可能少。
  例如,首先设计测试函数,可以涉及初始化线性表、销毁线性表、输出线性表、插入数据元素对应的函数,设计的测试函数可以是:

#include "linklist.h"
int main()
{
    LinkList *L;
    InitList(L);
    ListInsert(L, 1, 15);
    ListInsert(L, 1, 10);
    ListInsert(L, 1, 5);
    ListInsert(L, 1, 20);
    DispList(L);
    DestroyList(L);
    return 0;
}

  为测试其基本操作算法的测试代码请自行设计并实现测试过程。

目录
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
116 4
|
2月前
|
算法 安全 数据安全/隐私保护
Crypto++库支持多种加密算法
【10月更文挑战第29天】Crypto++库支持多种加密算法
106 4
|
10天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
47 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
110 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
57 0