数据结构例程——从一个顶点到其余各顶点的最短路径

简介: 本文是[数据结构基础系列(7):图]中第13课时[从一个顶点到其余各顶点的最短路径]的例程。(程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…)#include <stdio.h>#include <malloc.h>#include "graph.h"#define MaxSize 100void Ppat

本文是[数据结构基础系列(7):图]中第13课时[从一个顶点到其余各顶点的最短路径]的例程。

(程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
#define MaxSize 100
void Ppath(int path[],int i,int v)  //前向递归查找路径上的顶点
{
    int k;
    k=path[i];
    if (k==v)  return;          //找到了起点则返回
    Ppath(path,k,v);            //找顶点k的前一个顶点
    printf("%d,",k);            //输出顶点k
}
void Dispath(int dist[],int path[],int s[],int n,int v)
{
    int i;
    for (i=0; i<n; i++)
        if (s[i]==1)
        {
            printf("  从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);
            printf("%d,",v);    //输出路径上的起点
            Ppath(path,i,v);    //输出路径上的中间点
            printf("%d\n",i);   //输出路径上的终点
        }
        else  printf("从%d到%d不存在路径\n",v,i);
}
void Dijkstra(MGraph g,int v)
{
    int dist[MAXV],path[MAXV];
    int s[MAXV];
    int mindis,i,j,u;
    for (i=0; i<g.n; i++)
    {
        dist[i]=g.edges[v][i];      //距离初始化
        s[i]=0;                     //s[]置空
        if (g.edges[v][i]<INF)      //路径初始化
            path[i]=v;
        else
            path[i]=-1;
    }
    s[v]=1;
    path[v]=0;              //源点编号v放入s中
    for (i=0; i<g.n; i++)               //循环直到所有顶点的最短路径都求出
    {
        mindis=INF;                 //mindis置最小长度初值
        for (j=0; j<g.n; j++)       //选取不在s中且具有最小距离的顶点u
            if (s[j]==0 && dist[j]<mindis)
            {
                u=j;
                mindis=dist[j];
            }
        s[u]=1;                     //顶点u加入s中
        for (j=0; j<g.n; j++)       //修改不在s中的顶点的距离
            if (s[j]==0)
                if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])
                {
                    dist[j]=dist[u]+g.edges[u][j];
                    path[j]=u;
                }
    }
    Dispath(dist,path,s,g.n,v);     //输出最短路径
}

int main()
{
    MGraph g;
    int A[7][7]=
    {
        {0,4,6,6,INF,INF,INF},
        {INF,0,1,INF,7,INF,INF},
        {INF,INF,0,INF,6,4,INF},
        {INF,INF,2,0,INF,5,INF},
        {INF,INF,INF,INF,0,INF,6},
        {INF,INF,INF,INF,1,0,8},
        {INF,INF,INF,INF,INF,INF,0}
    };
    ArrayToMat(A[0], 7, g);
    Dijkstra(g,0);
    return 0;
}

附:测试用图结构
这里写图片描述

目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
5月前
|
存储 算法 C语言
数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)
数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)
87 1
|
5月前
|
算法 Java
Java数据结构与算法:最短路径算法
Java数据结构与算法:最短路径算法
|
5月前
|
算法 Java 定位技术
Java数据结构与算法:贪心算法之最短路径
Java数据结构与算法:贪心算法之最短路径
|
算法 Java
【Java高阶数据结构】图的最短路径问题
Java高阶数据结构 & 图的最短路径问题 图的基础知识博客:传送门 最短路径问题: 从在带权图的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总 和达到最小。 一共会讲解三种算法
141 1
|
算法
【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)
【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)
203 0
|
算法 Java
数据结构(12)Dijkstra算法JAVA版:图的最短路径问题
12.1.概述 12.1.1.无权图的最短路径 无权图的最短路径,即最少步数,使用BFS+贪心算法来求解最短路径,比较好实现,此处不做展开讨论。
161 0
【数据结构】多段图最短路径
【数据结构】多段图最短路径
152 0
|
算法 机器人 C++
数据结构与算法之最短路路径与最短路径和&&动态规划
数据结构与算法之最短路路径与最短路径和&&动态规划
252 0
数据结构与算法之最短路路径与最短路径和&&动态规划
数据结构191-图论-添加顶点边代码
数据结构191-图论-添加顶点边代码
56 0
数据结构191-图论-添加顶点边代码

热门文章

最新文章