数据结构例程——每对顶点之间的最短路径

简介: 本文是[数据结构基础系列(7):图]中第14课时[每对顶点之间的最短路径]的例程。[Floyd算法实现] (程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…)#include <stdio.h>#include <malloc.h>#include "graph.h"#define MaxSize 100

本文是[数据结构基础系列(7):图]中第14课时[每对顶点之间的最短路径]的例程。

这里写图片描述

[Floyd算法实现]
(程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…

#include <stdio.h>
#include <malloc.h>
#include "graph.h"
#define MaxSize 100
void Ppath(int path[][MAXV],int i,int j)  //前向递归查找路径上的顶点
{
    int k;
    k=path[i][j];
    if (k==-1) return;  //找到了起点则返回
    Ppath(path,i,k);    //找顶点i的前一个顶点k
    printf("%d,",k);
    Ppath(path,k,j);    //找顶点k的前一个顶点j
}
void Dispath(int A[][MAXV],int path[][MAXV],int n)
{
    int i,j;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
        {
            if (A[i][j]==INF)
            {
                if (i!=j)
                    printf("从%d到%d没有路径\n",i,j);
            }
            else
            {
                printf("  从%d到%d=>路径长度:%d 路径:",i,j,A[i][j]);
                printf("%d,",i);    //输出路径上的起点
                Ppath(path,i,j);    //输出路径上的中间点
                printf("%d\n",j);   //输出路径上的终点
            }
        }
}
void Floyd(MGraph g)
{
    int A[MAXV][MAXV],path[MAXV][MAXV];
    int i,j,k;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            A[i][j]=g.edges[i][j];
            path[i][j]=-1;
        }
    for (k=0; k<g.n; k++)
    {
        for (i=0; i<g.n; i++)
            for (j=0; j<g.n; j++)
                if (A[i][j]>A[i][k]+A[k][j])
                {
                    A[i][j]=A[i][k]+A[k][j];
                    path[i][j]=k;
                }
    }
    Dispath(A,path,g.n);   //输出最短路径
}
int main()
{
    MGraph g;
    int A[4][4]=
    {
        {0,  5,INF,7},
        {INF,0,  4,2},
        {3,  3,  0,2},
        {INF,INF,1,0}
    };
    ArrayToMat(A[0], 4, g);
    Floyd(g);
    return 0;
}

注:例程中的测试图见上面算法思想截图

目录
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
5月前
|
存储 算法 C语言
数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)
数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)
87 1
|
5月前
|
算法 Java
Java数据结构与算法:最短路径算法
Java数据结构与算法:最短路径算法
|
5月前
|
算法 Java 定位技术
Java数据结构与算法:贪心算法之最短路径
Java数据结构与算法:贪心算法之最短路径
|
算法 Java
【Java高阶数据结构】图的最短路径问题
Java高阶数据结构 & 图的最短路径问题 图的基础知识博客:传送门 最短路径问题: 从在带权图的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总 和达到最小。 一共会讲解三种算法
141 1
|
算法
【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)
【茶话数据结构】查找最短路径——Dijkstra算法详解(保姆式详细图解,步步紧逼,保你学会)
203 0
|
算法 Java
数据结构(12)Dijkstra算法JAVA版:图的最短路径问题
12.1.概述 12.1.1.无权图的最短路径 无权图的最短路径,即最少步数,使用BFS+贪心算法来求解最短路径,比较好实现,此处不做展开讨论。
161 0
【数据结构】多段图最短路径
【数据结构】多段图最短路径
152 0
|
算法 机器人 C++
数据结构与算法之最短路路径与最短路径和&&动态规划
数据结构与算法之最短路路径与最短路径和&&动态规划
252 0
数据结构与算法之最短路路径与最短路径和&&动态规划
数据结构191-图论-添加顶点边代码
数据结构191-图论-添加顶点边代码
56 0
数据结构191-图论-添加顶点边代码

热门文章

最新文章