【漫画】JAVA并发编程 J.U.C Lock包之ReentrantLock互斥锁

简介: 除了synchronized ,JAVA还提供了强大的Lock包来实现互斥。具有超时、非阻塞、可中断的方式获取锁等诸多特性,为我们编写更加安全、健壮的并发程序提供了很大的便利。

原创声明:本文来源于公众号【胖滚猪学编程】 转载请注明出处

JAVA并发编程 如何解决原子性问题 的最后,我们卖了个关子,互斥锁不仅仅只有synchronized关键字,还可以用J.U.C中的Locks的包来实现,并且它非常强大!今天就来一探究竟吧!

_1
image

ReentrantLock

顾名思义,ReentrantLock叫做可重入锁,所谓可重入锁,顾名思义,指的是线程可以重复获取同一把锁。

ReentrantLock也是互斥锁,因此也可以保证原子性。

先写一个简单的demo上手吧,就拿原子性问题中两个线程分别做累加的demo为例,现在使用ReentrantLock来改写:

    private void add10K() {
        // 获取锁
        reentrantLock.lock();
        try {
            int idx = 0;
            while (idx++ < 10000) {
                count++;
            }
        } finally {
            // 保证锁能释放
            reentrantLock.unlock();
        }

    }

ReentrantLock在这里可以达到和synchronized一样的效果,为了方便你回忆,我再次把synchronized实现互斥的代码贴上来:

    private synchronized void add10K(){
        int start = 0;
        while (start ++ < 10000){
            this.count ++;
        }
    }

_2

ReentrantLock与synchronized的区别

1、重入
synchronized可重入,因为加锁和解锁自动进行,不必担心最后是否释放锁;ReentrantLock也可重入,但加锁和解锁需要手动进行,且次数需一样,否则其他线程无法获得锁。

2、实现
synchronized是JVM实现的、而ReentrantLock是JDK实现的。说白了就是,是操作系统来实现,还是用户自己敲代码实现。

3、性能
在 Java 的 1.5 版本中,synchronized 性能不如 SDK 里面的 Lock,但 1.6 版本之后,synchronized 做了很多优化,将性能追了上来。

4、功能
ReentrantLock锁的细粒度和灵活度,都明显优于synchronized ,毕竟越麻烦使用的东西肯定功能越多啦!

特有功能一:可指定是公平锁还是非公平锁,而synchronized只能是非公平锁。

公平的意思是先等待的线程先获取锁。可以在构造函数中指定公平策略。

    // 分别测试为true 和 为false的输出。为true则输出顺序一定是A B C 但是为false的话有可能输出A C B
    private static final ReentrantLock reentrantLock = new ReentrantLock(true);
    public static void main(String[] args) throws InterruptedException {
        ReentrantLockDemo2 demo2 = new ReentrantLockDemo2();
        Thread a = new Thread(() -> { test(); }, "A");
        Thread b = new Thread(() -> { test(); }, "B");
        Thread c = new Thread(() -> { test(); }, "C");
        a.start();b.start();c.start();

    }
    public static void test() {
        reentrantLock.lock();
        try {
            System.out.println("线程" + Thread.currentThread().getName());
        } finally {
            reentrantLock.unlock();//一定要释放锁
        }
    }

在原子性文章的最后,我们还卖了个关子,以转账为例,说明synchronized会导致死锁的问题,即两个线程你等我的锁,我等你的锁,两方都阻塞,不会释放!为了方便,我再次把代码贴上来:

    static void transfer(Account source,Account target, int amt) throws InterruptedException {
        // 锁定转出账户  Thread1锁定了A Thread2锁定了B
        synchronized (source) {
            Thread.sleep(1000);
            log.info("持有锁{} 等待锁{}",source,target);
            // 锁定转入账户  Thread1需要获取到B,可是被Thread2锁定了。Thread2需要获取到A,可是被Thread1锁定了。所以互相等待、死锁
            synchronized (target) {
                if (source.getBalance() > amt) {
                    source.setBalance(source.getBalance() - amt);
                    target.setBalance(target.getBalance() + amt);
                }
            }
        }
    }

而ReentrantLock可以完美避免死锁问题,因为它可以破坏死锁四大必要条件之一的:不可抢占条件。这得益于它这么几个功能:

特有功能二:非阻塞地获取锁。如果尝试获取锁失败,并不进入阻塞状态,而是直接返回false,这时候线程不用阻塞等待,可以先去做其他事情。所以不会造成死锁。

// 支持非阻塞获取锁的 API 
boolean tryLock();

现在我们用ReentrantLock来改造一下死锁代码

    static void transfer(Account source, Account target, int amt) throws InterruptedException {
        Boolean isContinue = true;
        while (isContinue) {
            if (source.getLock().tryLock()) {
                log.info("{}已获取锁 time{}", source.getLock(),System.currentTimeMillis());
                try {
                    if (target.getLock().tryLock()) {
                        log.info("{}已获取锁 time{}", target.getLock(),System.currentTimeMillis());
                        try {
                            log.info("开始转账操作");
                            source.setBalance(source.getBalance() - amt);
                            target.setBalance(target.getBalance() + amt);
                            log.info("结束转账操作 source{} target{}", source.getBalance(), target.getBalance());
                            isContinue=false;
                        } finally {
                            log.info("{}释放锁 time{}", target.getLock(),System.currentTimeMillis());
                            target.getLock().unlock();
                        }
                    }
                } finally {
                    log.info("{}释放锁 time{}", source.getLock(),System.currentTimeMillis());
                    source.getLock().unlock();
                }
            }
        }
    }

tryLock还支持超时。调用tryLock时没有获取到锁,会等待一段时间,如果线程在一段时间之内还是没有获取到锁,不是进入阻塞状态,而是throws InterruptedException,那这个线程也有机会释放曾经持有的锁,这样也能破坏死锁不可抢占条件。
boolean tryLock(long time, TimeUnit unit)

特有功能三:提供能够中断等待锁的线程的机制

synchronized 的问题是,持有锁 A 后,如果尝试获取锁 B 失败,那么线程就进入阻塞状态,一旦发生死锁,就没有任何机会来唤醒阻塞的线程。

但如果阻塞状态的线程能够响应中断信号,也就是说当我们给阻塞的线程发送中断信号的时候,能够唤醒它,那它就有机会释放曾经持有的锁 A。这样就破坏了不可抢占条件了。ReentrantLock可以用lockInterruptibly方法来实现。

    public static void main(String[] args) throws InterruptedException {
        ReentrantLockDemo5 demo2 = new ReentrantLockDemo5();
        Thread th1 = new Thread(() -> {
            try {
                deadLock(reentrantLock1, reentrantLock2);
            } catch (InterruptedException e) {
                System.out.println("线程A被中断");
            }
        }, "A");
        Thread th2 = new Thread(() -> {
            try {
                deadLock(reentrantLock2, reentrantLock1);
            } catch (InterruptedException e) {
                System.out.println("线程B被中断");
            }
        }, "B");
        th1.start();
        th2.start();
        th1.interrupt();

    }


    public static void deadLock(Lock lock1, Lock lock2) throws InterruptedException {
        lock1.lockInterruptibly(); //如果改成用lock那么是会一直死锁的
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        lock2.lockInterruptibly();
        try {
            System.out.println("执行完成");
        } finally {
            lock1.unlock();
            lock2.unlock();
        }

    }

特有功能四、可以用J.U.C包中的Condition实现分组唤醒需要等待的线程。而synchronized只能notify或者notifyAll。这里涉及到线程之间的协作,在后续章节会详细讲解,敬请关注公众号【胖滚猪学编程】。

ReentrantLock如何保证可见性

刚刚我们证明了ReentrantLock能保证原子性,那可以保证可见性吗?答案是必须的。

回忆下JAVA并发编程 如何解决可见性和有序性问题。我们说 Java 里多线程的可见性是通过 Happens-Before 规则保证的,比如 synchronized 之所以能够保证可见性,也是因为有一条 synchronized 相关的规则:synchronized 的解锁 Happens-Before 于后续对这个锁的加锁。

那 Java SDK 里面 Lock 靠什么保证可见性呢?Java SDK 里面锁的实现非常复杂,但是原理还是需要简单介绍一下:它是利用了 volatile 相关的 Happens-Before 规则。

ReentrantLock的同步其实是委托给AbstractQueuedSynchronizer的。加锁和解锁是通过改变AbstractQueuedSynchronizer的state属性,这个属性是volatile的。

image

获取锁的时候,会读写 state 的值;解锁的时候,也会读写 state 的值。类比volatile是如何保证可见性的就可以解决这个问题了!如果不清楚可以回顾一下【漫画】JAVA并发编程 如何解决可见性和有序性问题

总结

synchronized 在JVM层面实现了对临界资源的同步互斥访问,但 synchronized 粒度有些大,在处理实际问题时存在诸多局限性,比如响应中断等。

Lock 提供了比 synchronized更广泛的锁操作,它能以更优雅更灵活的方式处理线程同步问题。

我们以ReentrantLock为例子进入了Lock的世界,最重要的是记住ReentrantLock的特有功能,比如中断、超时、非阻塞锁等。当你的需求符合这些特有功能的时候,那你只能选择Lock而不是synchronized

附文中代码github地址:https://github.com/LYL41011/java-concurrency-learning

原创声明:本文来源于公众号【胖滚猪学编程】 转载请注明出处

相关文章
|
29天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
31 0
|
2月前
|
缓存 Java
java中的公平锁、非公平锁、可重入锁、递归锁、自旋锁、独占锁和共享锁
本文介绍了几种常见的锁机制,包括公平锁与非公平锁、可重入锁与不可重入锁、自旋锁以及读写锁和互斥锁。公平锁按申请顺序分配锁,而非公平锁允许插队。可重入锁允许线程多次获取同一锁,避免死锁。自旋锁通过循环尝试获取锁,减少上下文切换开销。读写锁区分读锁和写锁,提高并发性能。文章还提供了相关代码示例,帮助理解这些锁的实现和使用场景。
java中的公平锁、非公平锁、可重入锁、递归锁、自旋锁、独占锁和共享锁
|
2月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
156 6
|
2月前
|
Java 开发者
Java 中的锁是什么意思,有哪些分类?
在Java多线程编程中,锁用于控制多个线程对共享资源的访问,确保数据一致性和正确性。本文探讨锁的概念、作用及分类,包括乐观锁与悲观锁、自旋锁与适应性自旋锁、公平锁与非公平锁、可重入锁和读写锁,同时提供使用锁时的注意事项,帮助开发者提高程序性能和稳定性。
88 3
|
2月前
|
Java Android开发
Eclipse 创建 Java 包
Eclipse 创建 Java 包
33 1
|
2月前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
47 2
|
2月前
|
设计模式 安全 Java
Java 多线程并发编程
Java多线程并发编程是指在Java程序中使用多个线程同时执行,以提高程序的运行效率和响应速度。通过合理管理和调度线程,可以充分利用多核处理器资源,实现高效的任务处理。本内容将介绍Java多线程的基础概念、实现方式及常见问题解决方法。
96 0
|
3月前
|
Java
Java 中锁的主要类型
【10月更文挑战第10天】
|
3月前
|
Java Apache Maven
Java/Spring项目的包开头为什么是com?
本文介绍了 Maven 项目的初始结构,并详细解释了 Java 包命名惯例中的域名反转规则。通过域名反转(如 `com.example`),可以确保包名的唯一性,避免命名冲突,提高代码的可读性和逻辑分层。文章还讨论了域名反转的好处,包括避免命名冲突、全球唯一性、提高代码可读性和逻辑分层。最后,作者提出了一个关于包名的问题,引发读者思考。
108 0
Java/Spring项目的包开头为什么是com?
|
3月前
|
安全 Java 开发者
java的synchronized有几种加锁方式
Java的 `synchronized`通过上述三种加锁方式,为开发者提供了从粗粒度到细粒度的并发控制能力,满足了不同场景下的线程安全需求。合理选择加锁方式对于提升程序的并发性能和正确性至关重要,开发者应根据实际应用场景的特性和性能要求来决定使用哪种加锁策略。
41 0