阿里巴巴飞天大数据平台实时计算Flink on Kubernetes最新特性

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 目前实时计算的产品已经有两种模式,即共享模式和独享模式。这两种模式都是全托管方式,这种托管方式下用户不需要关心整个集群的运维。其次,共享模式和独享模式使用的都是Blink引擎。

本文作者:张荣,阿里云智能计算平台事业部产品专家

Flink产品介绍

目前实时计算的产品已经有两种模式,即共享模式和独享模式。这两种模式都是全托管方式,这种托管方式下用户不需要关心整个集群的运维。其次,共享模式和独享模式使用的都是Blink引擎。这两种模式为用户提供的主要功能也类似,

  1. 都提供开发控制台;
  2. 开发使用的都是Blink SQL,其中独享模式由于进入了用户的VPC,部署在用户的ECS上,因此可以使用很多底层的API,如UDX;
  3. 都提供一套的开箱即用的metric收集、展示功能;
  4. 都提供作业监控和报警功能。
  5. 最后,在收费模式上,共享模式和独享模式用户所承担的都是硬件加软件(独享模式是软件(VPC))的费用。

Flink on Kubernetes模式介绍及对比

在共享和独享这两种模式的基础上,阿里云实时计算团队于2019年9月中旬会推出一个新的模式,Flink on K8S,其与前两种模式区别主要在于:
• 托管模式:集群以半托管模式部署在用户ECS和K8S上,用户对该集群用完全的掌控能力。
• 引擎版本:直接使用开源Flink版本
• 提供功能:提供开发控制台支持用户提交并控制作业;支持Flink 1.6/1.7/1.8等版本;也提供metric收集、展示、作业监控、报警功能;提供其他可插拔的增值功能。
• 收费模式:Flink on K8S模式下软件(VPC)是完全免费的,用户只需要支付ECS的费用就可以免费试用Flink产品。
各种模式对比如下:
image.png

引擎方面,Blink是由阿里云实时计算团队于2016年从Flink 1.5.1拉出来的分支,在这之后的三年多的时间里,该分支被进行了一系列的改造:1)SQL优化器和执行器的改造,目前有更完善的SQL支持,提供了Unified SQL;2)在Runtime上,提供了统一高效的算子框架、更加灵活的chaining策略和自定义调度插件;3)提供增量Checkpoint。
2019年1月份,阿里巴巴决定将Blink的所有优化功能贡献给社区,经过六个多月的改造,Blink的部分基本功能已经合并到Flink 1.9.0中,与此同时,阿里也收购了Flink创始团队成立的公司dataArtisans。在此之后,两个团队将共同维护一个新的品牌Ververica,该品牌推出新的界面平台Ververica Platform来为用户提供服务。
image.png

Why Flink+Kubernetes

Flink之所以选择K8S来作为底层的资源管理来为用户提供服务主要原因有以下几点:
• Flink特性:首先Flink是大数据类应用,与传统大数据应用如Spark、Hadoop、MapReduce以及Hive等不同的是,Flink是常驻进程,其类似于在线业务的App,作业发布后修改频率比较低,,这就要求执行作业的worker长时间稳定运行。另外,与其他批处理作业相比,流作业任务一般应用于实时风控和实时推荐的业务场景下,其重要度更高,稳定性要求也更高。
• K8S优势:K8S设计的初衷是为在线应用服务,目标是为了帮助在线应用更好地发布和管理,实现资源隔离;其次,目前K8S具备一定的生态优势,目前很多用户已经开始或尝试开始使用K8S来管理在线应用;K8S可以很好地集成其他集群维护工具,如监控工具普罗米修斯,同时在资源弹性方面,K8S可以很方便地进行扩缩容。
image.png

Ververica Platform介绍

Ververica Platform平台所包含主要功能模块如下图所示:
• K8S集群:需要用户在阿里云上创建ACK集群(阿里云官网搜索ACK进入产品主页了解详情)。
• 可插拔组件:1) APP Manager。用户可通过APP Manager界面对作业进行提交和管理;2)开箱即用的指标收集、展示及报警组件,该组件集成了Prometheus的功能。3)日志收集、分析、展示组件
• 增值功能:首先是Libra智能调优系统。熟悉Flink的用户可能都知道,目前Flink的调优比较麻烦,尤其在开源Flink中,用户需要多次预估波峰流量来设置Flink作业的资源,否则在波峰的时候可能会出现作业延时。而所推出的Libra智能调优系统功能会根据波峰波谷的特点来自动调整Flink资源,在没有人为干预的情况下提高资源利用率,同时降低波峰时的作业延时。除此之外,平台还将提供Alink机器学习组件、Gemini等增值功能。
image.png

总体而言,Ververica Platform的特点是免费、开源、增值和易用。首先用户只需要支付ECS的费用便可以使用Ververica Platform平台的所有功能;其次Flink Core是开源的,用户无需的担心其兼容性和因为被某个平台绑架而产生的问题,并且开源Flink的功能可以无缝迁移到该平台上;此外,Ververica Platform提供了一系列增值功能,整个平台易用性较高。
下图是Ververica Platform的平台界面,通过该界面用户可以创建并提交一个Flink作业。用户可以设置Flink作业的名称、初始化状态、Flink版本(目前支持1.6/1.7/1.8)、Jar包地址以及开源资源配置(如并发度、Job Manager的CPC内存等),点击提交后可以很方便地在K8S上运行一个Flink作业。
image.png

下图展示了一个已经在K8S上运行的作业,用户可以浏览整个作业的配置信息、拓扑图、在K8S上的Events、Jobs、Savepoints的状态·
image.png

用户还可以在界面上直观地查看作业默认的metrics和logs信息,从而简化作业问题排查的复杂度。此外,该平台还支持直接显示Flink Web UI。目前的平台功能比较简洁,后续会将平台自动调优、Alink 机器学习等方面的功能纳入进来。
image.png

以上是阿里云Flink on Kubernetes产品形态的新功能,欢迎大家试用体验。试用的具体流程是:阿里云提交工单,工单选择实时计算产品,标明“希望试用实时计算Flink on Kubernetes产品形态”,之后便可以等待阿里云相关工作人员联系进行试用。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 大数据 API
大数据-118 - Flink DataSet 基本介绍 核心特性 创建、转换、输出等
大数据-118 - Flink DataSet 基本介绍 核心特性 创建、转换、输出等
76 0
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
170 56
|
3月前
|
消息中间件 存储 分布式计算
大数据-72 Kafka 高级特性 稳定性-事务 (概念多枯燥) 定义、概览、组、协调器、流程、中止、失败
大数据-72 Kafka 高级特性 稳定性-事务 (概念多枯燥) 定义、概览、组、协调器、流程、中止、失败
44 4
|
3月前
|
消息中间件 分布式计算 大数据
大数据-75 Kafka 高级特性 稳定性-一致性保证 LogAndOffset(LEO) HightWatermark(HW) 水位/水印
大数据-75 Kafka 高级特性 稳定性-一致性保证 LogAndOffset(LEO) HightWatermark(HW) 水位/水印
53 3
|
3月前
|
消息中间件 大数据 Kafka
大数据-77 Kafka 高级特性-稳定性-延时队列、重试队列 概念学习 JavaAPI实现(二)
大数据-77 Kafka 高级特性-稳定性-延时队列、重试队列 概念学习 JavaAPI实现(二)
39 2
|
3月前
|
消息中间件 SQL 分布式计算
大数据-74 Kafka 高级特性 稳定性 - 控制器、可靠性 副本复制、失效副本、副本滞后 多图一篇详解
大数据-74 Kafka 高级特性 稳定性 - 控制器、可靠性 副本复制、失效副本、副本滞后 多图一篇详解
30 2
|
3月前
|
消息中间件 分布式计算 Java
大数据-73 Kafka 高级特性 稳定性-事务 相关配置 事务操作Java 幂等性 仅一次发送
大数据-73 Kafka 高级特性 稳定性-事务 相关配置 事务操作Java 幂等性 仅一次发送
42 2
|
3月前
|
消息中间件 NoSQL 大数据
大数据-77 Kafka 高级特性-稳定性-延时队列、重试队列 概念学习 JavaAPI实现(一)
大数据-77 Kafka 高级特性-稳定性-延时队列、重试队列 概念学习 JavaAPI实现(一)
48 1
|
3月前
|
消息中间件 SQL 分布式计算
大数据-76 Kafka 高级特性 稳定性-消费重复 生产者、Broker、消费者 导致的重复消费问题
大数据-76 Kafka 高级特性 稳定性-消费重复 生产者、Broker、消费者 导致的重复消费问题
49 1
|
3月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
130 0

相关产品

  • 云原生大数据计算服务 MaxCompute