AI大觉醒:图灵奖得主Bengio称AI将产生意识,未来机器学习核心是注意力机制

简介:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


人工智能会产生意识吗?

这是一直以来美剧《西部世界》中探讨的问题。AI主人公觉醒,意识到这个世界是人类杀伐主宰的乐园,于是开启了逆袭之路。

1

在本周举行的2020年ICLR上,图灵奖得主、蒙特利尔学习算法研究所主任Yoshua Bengio对AI和机器学习的未来提供了最新的见解。他讲到未来机器学习完全有可能超越无意识,向全意识迈进。而注意力机制正是实现这一过程的关键要素。

这位大咖2月份刚刚在纽约的2020年AAAI 会议上与图灵奖获得者 Geoffrey Hinton 和 Yann LeCun 一起发表了演讲。而在ICLR的演讲中,Bengio 阐述了他更早之前的一些想法。

注意力机制是啥?

注意力机制来源于人类的视觉注意力,是人类在进化过程中形成的一种处理视觉信息的机制。最简单的例子,比如看一个图片,会有特别显眼的场景率先吸引注意力,因为大脑中对这类东西很敏感。

2

注意力是神经科学理论的核心,该理论认为人们的注意力资源有限,所以大脑会自动提炼最有用的信息。

在机器学习的语境下,「注意力」指的是一个算法关注一个或同时关注到几个元素的机制。它是一些机器学习模型架构的核心。2017年,谷歌论文Attention is All You Need当中提出了Transformer,一个利用注意力机制来提高模型训练速度的方法。Transformer在一些特定任务中性能表现超过Google之前的神经机器翻译模型。

3

Google Transformer架构

目前,注意力模型(Attention Model)已经在自然语言处理、图像识别以及语音识别等领域取得了最先进的成果,是深度学习技术中最值得关注与深入了解的核心技术之一。注意力模型也是构成企业AI的基础,帮助员工完成一系列认知要求高的任务。

类比人类思维,靠直觉还是靠推理?

Bengio 在演讲中谈到了美籍以色列心理学家兼经济学家 Daniel Kahneman 在他2011出版的开创性著作《思考,快与慢》中提出的认知系统。

4

第一种认知类型是无意识的(快系统),凭直觉,非常快速,非语言性的,基于惯性,它只涉及隐含的知识类型,是人潜意识中的知识,深藏于脑海中。

简单说,这种过程不费脑子,第一反应,直觉地做出回应。比如说,思考1+1=2的过程。

当然这种直觉思考的过程会产生很多偏差,比如说曝光效应,光环效应等。曝光效应一个最明显的例子就是电视广告,天天重复播放的信息给你洗脑,会在人的大脑里构成曝光效应,让你觉得这个产品好。直觉很多时候是非理性的。

第二种认知类型是有意识的(慢系统),基于语言学和算法,要涉及更高级一些的推理和规划,以及显性的知识。换句话说,是需要费力思考的,比较慢,比如说脑内运算158乘以67。

正是快和慢的结合构成了我们人类的思维模式。

Bengio将这个人类的有意识思维和AI进行对比,他指出,有意识的认知系统的一个有趣特征是,它可以在新的情境下,将语义概念进行重组,这也是人工智能和机器学习算法所具备的特性。

某种程度上,AI和机器学习算法比人脑的直觉要更加理性。

这让人想起《西部世界》的科学顾问,神经学家大卫·伊格尔曼(David Eagleman)说的一句话,意识,是一种突破程序设定的连接。我们能够复制大脑的算法;如果这个算法等同于意识,那意识也理应可以被复制和转移。

5

意识从无到有,未来AI不再「跟着感觉走」?

目前的机器学习方法还没有完全超越无意识到全意识,但是 Bengio 相信这种转变未来是完全有可能的。

他指出,神经科学研究表明,有意识的思维中涉及的语义变量往往是含有因果关系的ーー它们涉及的对象可控,比如说意图。换句话说,不再跟着感觉走,是有逻辑和目的性在其中。

同时,语义变量和思维之间存在映射关系,例如词语和句子之间的关系,而且已有的概念可以进行重新组合,形成新的、不熟悉的概念。

注意力正是实现这一过程的核心要素之一,Bengio 解释道。

在此基础上,他和同事们在去年的一篇论文中提出了循环独立机制(recurrent independent mechanism,RIMs) ,这是一种新的模型架构,在这种架构中,多组单元独立运作,相互之间通过注意力机制交流。前者保证了专业,后者保证了泛化。

6

实验目标是,证明 RIM 能够改善模型在不同环境和模块化任务中的泛化效果。该研究不关注该方法是否超出高度优化的基线模型,而是想展示该方法面对大量不同任务时的通用性,且这些任务的环境是不断变化的。

7

图 10:RIM 与 LSTM 基线模型的对比。在这 4 个不同实验中,研究者对比了 RIM 和两个不同的 LSTM 基线模型。在所有案例中,研究者发现 rollout 过程中,RIM 比 LSTM 更准确地捕捉到球的运动轨迹。

实验结果表明,RIM具备专门化(specialization)特性,可大幅提升模型在大量不同任务上的泛化性能。

「这使得智能体能够更快地适应分布的变化,或者... ... 推断出变化发生的原因,」Bengio 说。

他又讲到想要打造「有意识」的AI系统面临几大挑战,包括训练模型进行元学习(或理解数据中的因果关系) ,以及加强机器学习和强化学习之间的集成。但他相信,生物学和AI研究之间的相互作用最终将解开这把神奇的钥匙,使这些机器可以像人类一样推理,甚至表达情感。

8

「神经科学早已开始研究意识相关的问题了... ... 在过去的几十年里取得了很大进展。我认为现在是时候将这些进展纳入到机器学习模型当中了。」Bengio在演讲中表示。

看来西部世界中的世界也不远了...

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-29
本文作者:梦佳
本文来自:“新智元”,了解相关信息可以关注“新智元”

相关文章
|
4月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
3月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
3月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
4月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
232 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
6月前
|
人工智能 智能设计 自然语言处理
2024云栖大会回顾|PAI ArtLab x 通往AGI之路系列活动,PAI ArtLab助力行业AI创新
2024云栖大会回顾|PAI ArtLab x 通往AGI之路系列活动,PAI ArtLab助力行业AI创新
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
202 6
|
7月前
|
机器学习/深度学习 数据采集 人工智能
容器化机器学习流水线:构建可复用的AI工作流
本文介绍了如何构建容器化的机器学习流水线,以提高AI模型开发和部署的效率与可重复性。首先,我们探讨了机器学习流水线的概念及其优势,包括自动化任务、确保一致性、简化协作和实现CI/CD。接着,详细说明了使用Kubeflow Pipelines在Kubernetes上构建流水线的步骤,涵盖安装、定义流水线、构建组件镜像及上传运行。容器化流水线不仅提升了环境一致性和可移植性,还通过资源隔离和扩展性支持更大规模的数据处理。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(四):模型训练
本文以“从璞玉到珍宝”为喻,深入探讨AI模型训练的全过程。数据集是灵魂原石,领域适配性、质量和规模决定模型高度;优化器如刻刀手法,学习率调整和正则化确保精细雕刻;超参数优化与多模态注意力机制提升性能。通过案例解析(如DeepSeek-Chat、通义千问),展示特定数据如何塑造专属能力。最后提供避坑工具箱,涵盖过拟合解决与资源不足应对策略,强调用`torch.save()`记录训练历程,助力打造智能传世之作。
319 0
|
6月前
|
人工智能 JSON 物联网
基于 PAI-ArtLab 使用 ComfyUI 搭建对话式 AI 女友
本实验介绍了一款名为“AI虚拟女友——胡桃”的应用,通过ComfyUI后端与WebUI展示效果,结合LLM节点和知识图谱工具包(KG),实现角色人设稳定及长期记忆功能。用户可通过输入信息与AI互动,并自定义人设知识图谱和角色LoRA。操作步骤包括登录PAI ArtLab平台、加载工作流文件、配置角色参数并与AI对话。此外,还提供了Graph RAG技术详解及常见问题解答,帮助用户更好地理解和使用该系统。

热门文章

最新文章