在文件存储 HDFS 上使用 Apache Flink

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文主要为大家介绍在文件存储HDFS上搭建及使用Apache Flink的方法。

111.jpg
镜像下载、域名解析、时间同步请点击 阿里巴巴开源镜像站

一、准备工作

在文件存储HDFS上使用Apache Flink,需要先完成以下准备工作。

说明 本文档的操作步骤中涉及的安装包版本号、文件夹路径,请根据实际情况进行替换。

  1. 开通文件存储HDFS服务并创建文件系统实例和挂载点,详情请参见HDFS快速入门
  2. 在计算节点上安装JDK。版本不能低于1.8。
  3. 在计算节点上安装Scala。Scala下载地址:官方链接,其版本要与使用的Apache Flink版本相兼容。
  4. 下载Apache Hadoop压缩包。Apache Hadoop下载地址:官方链接。建议您选用的Apache Hadoop版本不低于2.7.2,本文档中使用的Apache Hadoop版本为Apache Hadoop 2.7.2。
  5. 下载Apache Flink压缩包。在文件存储HDFS上使用的Flink的版本必须为1.9.0及以上,Apache Flink下载地址:官方链接。本文档中使用的Flink版本为官方提供的预编译版本Flink 1.9.0。

二、配置Apache Hadoop

1、执行如下命令解压Apache Hadoop压缩包到指定文件夹。

tar -zxvf hadoop-2.7.2.tar.gz -C /usr/local/

2、修改hadoop-env.sh配置文件。

  • 执行如下命令打开hadoop-env.sh配置文件。
vim /usr/local/hadoop-2.7.2/etc/hadoop/hadoop-env.sh
  • 配置JAVA_HOME目录,如下所示。
export JAVA_HOME=/usr/java/default

3、修改core-site.xml配置文件。

  • 执行如下命令打开core-site.xml配置文件。
vim /usr/local/hadoop-2.7.2/etc/hadoop/core-site.xml
  • 在core-site.xml配置文件中,配置如下信息,详情请参见挂载文件系统
<configuration>
<property>
     <name>fs.defaultFS</name>
     <value>dfs://x-xxxxxxxx.cn-xxxxx.dfs.aliyuncs.com:10290</value>
     <!-- 该地址填写您的挂载点地址 -->
</property>
<property>
     <name>fs.dfs.impl</name>
     <value>com.alibaba.dfs.DistributedFileSystem</value>
</property>
<property>
     <name>fs.AbstractFileSystem.dfs.impl</name>
     <value>com.alibaba.dfs.DFS</value>
</property>
<property>
     <name>io.file.buffer.size</name>
     <value>8388608</value>
</property>
<property>
     <name>alidfs.use.buffer.size.setting</name>
     <value>true</value>
</property>
<property>
     <name>dfs.usergroupservice.impl</name>
     <value>com.alibaba.dfs.security.LinuxUserGroupService.class</value>
</property>
  <property>
     <name>dfs.connection.count</name>
     <value>16</value>
</property>
</configuration>

4、修改mapred-site.xml配置文件。

  • 执行如下命令打开mapred-site.xml配置文件。
vim /usr/local/hadoop-2.7.2/etc/hadoop/mapred-site.xml
  • 在mapred-site.xml配置文件中,配置如下信息。
<configuration>
<property>
      <name>mapreduce.framework.name</name>
      <value>yarn</value>
</property>
</configuration>

5、修改yarn-site.xml配置文件。

  • 执行如下命令打开yarn-site.xml配置文件。
vim /usr/local/hadoop-2.7.2/etc/hadoop/yarn-site.xml
  • 在yarn-site.xml配置文件中,配置如下信息。
<configuration>
<property>
  <name>yarn.resourcemanager.hostname</name>
  <value>xxxx</value>
  <!-- 该地址填写集群中yarn的resourcemanager的hostname -->
</property>
<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>
<property>
  <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
  <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
  <name>yarn.nodemanager.resource.memory-mb</name>
  <value>16384</value>
    <!-- 根据您当前的集群能力进行配置此项 -->
</property>
<property>
  <name>yarn.nodemanager.resource.cpu-vcores</name>
  <value>4</value>
     <!-- 根据您当前的集群能力进行配置此项 -->
</property>
<property>
  <name>yarn.scheduler.maximum-allocation-vcores</name>
  <value>4</value>
    <!-- 根据您当前的集群能力进行配置此项 -->
</property>
<property>
  <name>yarn.scheduler.minimum-allocation-mb</name>
  <value>3584</value>
    <!-- 根据您当前的集群能力进行配置此项 -->
</property>
<property>
  <name>yarn.scheduler.maximum-allocation-mb</name>
  <value>14336</value>
    <!-- 根据您当前的集群能力进行配置此项 -->
</property>
</configuration>

6、修改slaves配置文件。

  • 执行如下命令打开slaves配置文件。
vim /usr/local/hadoop-2.7.2/etc/hadoop/slaves
  • 在slaves配置文件中,配置如下信息。
node1
node2

7、配置环境变量。

  • 执行如下命令打开/etc/profile配置文件。
vim /etc/profile
  • 在/etc/profile配置文件中,配置如下信息。
export HADOOP_HOME=/usr/local/hadoop-2.7.2
export HADOOP_CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath)
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
  • 执行如下命令使配置生效。
source /etc/profile

8、执行如下命令配置文件存储HDFS的SDK。您可以单击下载文件存储HDFS的SDK(此处以aliyun-sdk-dfs-1.0.3.jar为例),将其部署在Apache Hadoop生态系统组件的CLASSPATH上,详情请参见挂载文件系统

cp aliyun-sdk-dfs-1.0.3.jar  /usr/local/hadoop-2.7.2/share/hadoop/hdfs

9、执行如下命令将${HADOOP_HOME}文件夹同步到集群的其他节点。

scp -r hadoop-2.7.2/ root@node2:/usr/local/

三、验证Apache Hadoop配置

完成Apache Hadoop配置后,不需要格式化namenode,也不需要使用start-dfs.sh来启动HDFS相关服务。如需使用yarn服务,只需在resourcemanager节点启动yarn服务,具体验证Apache Hadoop配置成功的方法请参见验证安装

四、编译flink-shade

1、下载 flink-shade源码到指定目录。

git clone https://github.com/apache/flink-shaded.git  ~/flink-shade

2、修改flink-shade源码中的pom文件。修改Hadoop版本为您的集群中使用的版本,在本文档中使用的Hadoop版本为2.7.2。

vim  ~/flink-shaded/flink-shaded-hadoop-2-parent/pom.xml

1.png
在依赖项中添加文件存储HDFS SDK,在本文档使用文件存储HDFS SDK版本为1.0.3。

vim  ~/flink-shaded/flink-shaded-hadoop-2-parent/flink-shaded-hadoop-2/pom.xml
...
<dependency>
       <groupId>com.aliyun.dfs</groupId>
       <artifactId>aliyun-sdk-dfs</artifactId>
       <version>1.0.3</version>
</dependency>
...

2.png
3、编译打包。

cd ~/flink-shaded
mvn package -Dshade-sources

五、配置Apache Flink

1、执行如下命令解压Flink压缩包到指定文件夹。

tar -zxvf flink-1.9.0-bin-scala_2.11.tgz -C /usr/local/

2、拷贝flink-shade编译的flink-shaded-hadoop-2-uber-x.y.z.jar到Flink的lib目录下。

cp  ~/flink-shaded/flink-shaded-hadoop-2-parent/flink-shaded-hadoop-2-uber/target/flink-shaded-hadoop-2-uber-2.7.2-11.0.jar /usr/local/flink-1.9.0/lib/

说明

  • 在使用Apache Flink之前必须在您的集群环境变量中配置HADOOP_HOME,HADOOP_CLASSPATH和HADOOP_CONF_DIR,详情请参见配置Apache Hadoop中的步骤7:配置环境变量。
  • 如果您使用的Flink版本中已经包含flink-shaded-hadoop-2-uber-x.y.z.jar,则需要使用编译flink-shade中编译的flink-shaded-hadoop-2-uber-x.y.z.jar进行替换。
  • 如果您需要对Flink进行额外的配置,请参考官方文档:配置操作指南

六、验证Apache Flink配置

使用Flink自带的WordCount.jar对文件存储HDFS上的数据进行读取,并将计算结果写入到文件存储HDFS,在测试之前需要先启动yarn服务。
1、生成测试数据。此处使用Apache Hadoop 2.7.2自带的jar包hadoop-mapreduce-examples-2.7.2.jar中的randomtextwriter方法在文件存储HDFS上生成测试数据。

/usr/local/hadoop-2.7.2/bin/hadoop jar  /usr/local/hadoop-2.7.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar 
randomtextwriter \
-D mapreduce.randomtextwriter.totalbytes=10240 \
-D mapreduce.randomtextwriter.bytespermap=1024 \
-D mapreduce.job.maps=4  \
-D mapreduce.job.reduces=2  \
dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290/flink-test/input \

其中,dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290为文件存储HDFS的挂载点,请根据您的实际情况替换。
2、查看在文件存储HDFS上生成的测试数据。

/usr/local/hadoop-2.7.2/bin/hadoop fs -cat dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290/flink-test/input/*

其中,dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290为文件存储HDFS的挂载点,请根据您的实际情况替换。
3、提交wordcount程序。

/usr/local/flink-1.9.0/bin/flink run 
-m yarn-cluster -yn 1 -yjm 1024 -ytm 1024 \
/usr/local/flink-1.9.0/examples/batch/WordCount.jar \
--input dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290/flink-test/input \
--output dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290/flink-test/output \

其中,dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290为文件存储HDFS的挂载点,请根据您的实际情况替换。
4、查看在文件存储HDFS上的结果文件。

/usr/local/hadoop-2.7.2/bin/hadoop fs -cat dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290/flink-test/output

其中,dfs://f-xxxxx.cn-xxx.dfs.aliyuncs.com:10290为文件存储HDFS的挂载点,请根据您的实际情况替换。
3.png

阿里巴巴开源镜像站 提供全面,高效和稳定的镜像下载服务。钉钉搜索 ' 21746399 ‘ 加入镜像站官方用户交流群。”

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
29天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
581 13
Apache Flink 2.0-preview released
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
65 3
|
1月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
55 1
|
1月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
148 6
|
1月前
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
60 3
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
38 4
|
1月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
75 5
|
1月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
36 4
|
1月前
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
149 5

推荐镜像

更多