Alluxio深度学习实战-1:体验在HDFS上运行PyTorch框架

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 在HDFS上运行PyTorch程序本来需要用户修改PyTorch的适配器代码进行完成的工作,通过Alluxio,我们简化了适配工作,能够快速开展模型的开发和训练。而通过Kubernetes平台,这件事情变得非常简单,欢迎尝试。

背景介绍

谷歌的 Tensorflow 与 Facebook 的 PyTorch 一直是颇受社区欢迎的两种深度学习框架。虽然 PyTorch 仍然是款比较新的框架,但由于友好的开发体验,使它发展非常迅猛。但是PyTorch
默认并不支持在HDFS直接进行模型训练,这给许多将数据集存放在HDFS的用户带来了困难。他们需要将HDFS数据导出;或者修改PyTorch的源码支持HDFS协议才能进行训练。这给用户的使用造成极大的不变。

而使用Alluxio可以将HDFS的接口翻译成POSIX FileSystem接口,避免PyTorch的开发者在计算框架层面进行修改,可以大大提升开发效率。
image

本文为您介绍如何在Kubernetes的环境下,验证整个工作

准备HDFS 2.7.2环境

由于我并没有现成的HDFS集群,可以直接利用Helm Chart安装HDFS

1.安装Hadoop 2.7.2的helm chart

git clone https://github.com/cheyang/kubernetes-HDFS.git

kubectl label nodes cn-huhehaote.192.168.0.117 hdfs-namenode-selector=hdfs-namenode-0
#helm install -f values.yaml hdfs charts/hdfs-k8s
helm dependency build charts/hdfs-k8s
helm install hdfs charts/hdfs-k8s \
      --set tags.ha=false  \
      --set tags.simple=true  \
      --set global.namenodeHAEnabled=false  \
      --set hdfs-simple-namenode-k8s.nodeSelector.hdfs-namenode-selector=hdfs-namenode-0

2.查看helm chart的状态

kubectl get all -l release=hdfs

3.客户端访问hdfs

kubectl exec -it hdfs-client-f5bc448dd-rc28d bash
root@hdfs-client-f5bc448dd-rc28d:/# hdfs dfsadmin -report
Configured Capacity: 422481862656 (393.47 GB)
Present Capacity: 355748564992 (331.32 GB)
DFS Remaining: 355748515840 (331.32 GB)
DFS Used: 49152 (48 KB)
DFS Used%: 0.00%
Under replicated blocks: 0
Blocks with corrupt replicas: 0
Missing blocks: 0
Missing blocks (with replication factor 1): 0

-------------------------------------------------
Live datanodes (2):

Name: 172.31.136.180:50010 (172-31-136-180.node-exporter.arms-prom.svc.cluster.local)
Hostname: iZj6c7rzs9xaeczn47omzcZ
Decommission Status : Normal
Configured Capacity: 211240931328 (196.73 GB)
DFS Used: 24576 (24 KB)
Non DFS Used: 32051716096 (29.85 GB)
DFS Remaining: 179189190656 (166.88 GB)
DFS Used%: 0.00%
DFS Remaining%: 84.83%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Tue Mar 31 16:48:52 UTC 2020

4.HDFS 客户端配置

[root@iZj6c61fdnjcrcrc2sevsfZ kubernetes-HDFS]# kubectl exec -it hdfs-client-f5bc448dd-rc28d bash
root@hdfs-client-f5bc448dd-rc28d:/# cat /etc/hadoop-custom-conf
cat: /etc/hadoop-custom-conf: Is a directory
root@hdfs-client-f5bc448dd-rc28d:/# cd /etc/hadoop-custom-conf
root@hdfs-client-f5bc448dd-rc28d:/etc/hadoop-custom-conf# ls
core-site.xml  hdfs-site.xml
root@hdfs-client-f5bc448dd-rc28d:/etc/hadoop-custom-conf# cat core-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://hdfs-namenode-0.hdfs-namenode.default.svc.cluster.local:8020</value>
  </property>
</configuration>
root@hdfs-client-f5bc448dd-rc28d:/etc/hadoop-custom-conf# cat hdfs-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>file:///hadoop/dfs/name</value>
  </property>
  <property>
    <name>dfs.namenode.datanode.registration.ip-hostname-check</name>
    <value>false</value>
  </property>
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>/hadoop/dfs/data/0</value>
  </property>
</configuration>
root@hdfs-client-f5bc448dd-rc28d:/etc/hadoop-custom-conf# hadoop --version
Error: No command named `--version' was found. Perhaps you meant `hadoop -version'
root@hdfs-client-f5bc448dd-rc28d:/etc/hadoop-custom-conf# hadoop -version
Error: No command named `-version' was found. Perhaps you meant `hadoop version'
root@hdfs-client-f5bc448dd-rc28d:/etc/hadoop-custom-conf# hadoop version
Hadoop 2.7.2
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r b165c4fe8a74265c792ce23f546c64604acf0e41
Compiled by jenkins on 2016-01-26T00:08Z
Compiled with protoc 2.5.0
From source with checksum d0fda26633fa762bff87ec759ebe689c
This command was run using /opt/hadoop-2.7.2/share/hadoop/common/hadoop-common-2.7.2.jar

5.实验HDFS基本文件操作

# hdfs dfs -ls /
Found 1 items
drwxr-xr-x   - root supergroup          0 2020-03-31 16:51 /test
# hdfs dfs -mkdir /mytest
# hdfs dfs -copyFromLocal /etc/hadoop/hadoop-env.cmd /test/
# hdfs dfs -ls /test
Found 2 items
-rw-r--r--   3 root supergroup       3670 2020-04-20 08:51 /test/hadoop-env.cmd

6.下载数据

mkdir -p /data/MNIST/raw/
cd /data/MNIST/raw/
wget http://kubeflow.oss-cn-beijing.aliyuncs.com/mnist/train-images-idx3-ubyte.gz
wget http://kubeflow.oss-cn-beijing.aliyuncs.com/mnist/train-labels-idx1-ubyte.gz
wget http://kubeflow.oss-cn-beijing.aliyuncs.com/mnist/t10k-images-idx3-ubyte.gz
wget http://kubeflow.oss-cn-beijing.aliyuncs.com/mnist/t10k-labels-idx1-ubyte.gz
hdfs dfs -mkdir -p /data/MNIST/raw
hdfs dfs -copyFromLocal *.gz /data/MNIST/raw

部署Alluxio

1.先选择指定节点,可以是一个或者多个

kubectl label nodes cn-huhehaote.192.168.0.117 dataset=mnist

2.创建config.yaml, 其中要配置node selector指定节点

cat << EOF > config.yaml
image: registry.cn-huhehaote.aliyuncs.com/alluxio/alluxio
imageTag: "2.2.0-SNAPSHOT-b2c7e50"
nodeSelector:
    dataset: mnist
properties:
    alluxio.fuse.debug.enabled: "false"
    alluxio.user.file.writetype.default: MUST_CACHE
    alluxio.master.journal.folder: /journal
    alluxio.master.journal.type: UFS
    alluxio.master.mount.table.root.ufs: "hdfs://hdfs-namenode-0.hdfs-namenode.default.svc.cluster.local:8020"
worker:
    jvmOptions: " -Xmx4G "
master:
    jvmOptions: " -Xmx4G "
tieredstore:
  levels:
  - alias: MEM
    level: 0
    quota: 20GB
    type: hostPath
    path: /dev/shm
    high: 0.99
    low: 0.8
fuse:
  image: registry.cn-huhehaote.aliyuncs.com/alluxio/alluxio-fuse
  imageTag: "2.2.0-SNAPSHOT-b2c7e50"
  jvmOptions: " -Xmx4G -Xms4G "
  args:
    - fuse
    - --fuse-opts=direct_io
EOF

2.安装alluxio

wget http://kubeflow.oss-cn-beijing.aliyuncs.com/alluxio-0.12.0.tgz
tar -xvf alluxio-0.12.0.tgz
helm install alluxio -f config.yaml alluxio

3.查看alluxio的状态, 等所有组件都处于ready状态

helm get manifest alluxio | kubectl get -f -
NAME                     TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)                                   AGE
service/alluxio-master   ClusterIP   None         <none>        19998/TCP,19999/TCP,20001/TCP,20002/TCP   14h

NAME                            DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/alluxio-fuse     4         4         4       4            4           <none>          14h
NAME                            DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
daemonset.apps/alluxio-worker   4         4         4       4            4           <none>          14h

NAME                              READY   AGE
statefulset.apps/alluxio-master   1/1     14h

准备PyTorch容器镜像

1.准备Dockerfile

创建目录,并且创建Dockerfile和PyTorch脚本

mkdir pytorch-mnist
cd pytorch-mnist
vim Dockerfile

输入如下内容

FROM pytorch/pytorch:1.4-cuda10.1-cudnn7-devel

# pytorch/pytorch:1.4-cuda10.1-cudnn7-devel

ADD mnist.py /

CMD ["python", "/mnist.py"]

2.准备测试代码mnist.py

cd pytorch-mnist
vim mnist.py

输入如下内容

# -*- coding: utf-8 -*-
# @Author: cheyang
# @Date:   2020-04-18 22:41:12
# @Last Modified by:   cheyang
# @Last Modified time: 2020-04-18 22:44:06
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout2d(0.25)
        self.dropout2 = nn.Dropout2d(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output,
                                    target,
                                    reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=14, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')

    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()

    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")


if __name__ == '__main__':
    main()

3.构建镜像

在同级目录下构建自定义镜像,本例子中的目标容器镜像为registry.cn-shanghai.aliyuncs.com/tensorflow-samples/mnist:pytorch-1.4-cuda10.1-cudnn7-devel

docker build -t \
 registry.cn-shanghai.aliyuncs.com/tensorflow-samples/mnist:pytorch-1.4-cuda10.1-cudnn7-devel .

4.将构建好的镜像 registry.cn-shanghai.aliyuncs.com/tensorflow-samples/mnist:pytorch-1.4-cuda10.1-cudnn7-devel 推送到之前在华东1区创建的镜像仓库中去。可以参考镜像基本操作

提交PyTorch训练任务

1.安装arena

$ wget http://kubeflow.oss-cn-beijing.aliyuncs.com/arena-installer-0.3.3-332fcde-linux-amd64.tar.gz
$ tar -xvf arena-installer-0.3.3-332fcde-linux-amd64.tar.gz
$ cd arena-installer/
$ ./install.
$ yum install bash-completion -y
$ echo "source <(arena completion bash)" >> ~/.bashrc
$ chmod u+x ~/.bashrc

2.利用arena提交训练任务,记得要选择selector是dataset=mnist

arena submit tf \
             --name=alluxio-pytorch \
             --selector=dataset=mnist \
             --data-dir=/alluxio-fuse/data:/data \
             --gpus=1 \
             --image=registry.cn-shanghai.aliyuncs.com/tensorflow-samples/mnist:pytorch-1.4-cuda10.1-cudnn7-devel \
             "python /mnist.py"

3.并且通过arena查看训练日志

# arena logs --tail=20 alluxio-pytorch
Train Epoch: 12 [49280/60000 (82%)] Loss: 0.021669
Train Epoch: 12 [49920/60000 (83%)] Loss: 0.008180
Train Epoch: 12 [50560/60000 (84%)] Loss: 0.009288
Train Epoch: 12 [51200/60000 (85%)] Loss: 0.035657
Train Epoch: 12 [51840/60000 (86%)] Loss: 0.006190
Train Epoch: 12 [52480/60000 (87%)] Loss: 0.007776
Train Epoch: 12 [53120/60000 (88%)] Loss: 0.001990
Train Epoch: 12 [53760/60000 (90%)] Loss: 0.003609
Train Epoch: 12 [54400/60000 (91%)] Loss: 0.001943
Train Epoch: 12 [55040/60000 (92%)] Loss: 0.078825
Train Epoch: 12 [55680/60000 (93%)] Loss: 0.000925
Train Epoch: 12 [56320/60000 (94%)] Loss: 0.018071
Train Epoch: 12 [56960/60000 (95%)] Loss: 0.031451
Train Epoch: 12 [57600/60000 (96%)] Loss: 0.031353
Train Epoch: 12 [58240/60000 (97%)] Loss: 0.075761
Train Epoch: 12 [58880/60000 (98%)] Loss: 0.003975
Train Epoch: 12 [59520/60000 (99%)] Loss: 0.085389

Test set: Average loss: 0.0256, Accuracy: 9921/10000 (99%)

总结

在HDFS上运行PyTorch程序本来需要用户修改PyTorch的适配器代码进行完成的工作,通过Alluxio,我们简化了适配工作,能够快速开展模型的开发和训练。而通过Kubernetes平台,这件事情变得非常简单,欢迎尝试。

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。 &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
目录
相关文章
|
14天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
34 7
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
163 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。
67 4
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
141 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
1月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
64 2
|
1月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
27 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出深度学习:从基础到实战
【9月更文挑战第19天】本文将带你走进深度学习的世界,从基础概念入手,逐步深入到实战应用。我们将通过简单易懂的语言和生动的比喻,让你轻松理解深度学习的原理和应用场景。同时,我们还为你准备了一些实用的代码示例,帮助你快速入门深度学习,开启你的AI之旅。
60 10
|
2月前
|
机器学习/深度学习 数据挖掘 PyTorch
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
36 1
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习:从基础到实战
【9月更文挑战第23天】本文将带你走进深度学习的世界,从基本概念到实际应用,一步步揭示深度学习的神秘面纱。我们将通过实例和代码示例,帮助你理解和掌握深度学习的核心技术和方法。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的参考和启示。让我们一起探索深度学习的奥秘吧!
44 0