java多线程3:原子性,可见性,有序性

简介:

java多线程3:原子性,可见性,有序性

概念
在了解线程安全问题之前,必须先知道为什么需要并发,并发给我们带来什么问题。

为什么需要并发,多线程?

时代的召唤,为了更充分的利用多核CPU的计算能力,多个线程程序可通过提高处理器的资源利用率来提升程序性能。
方便业务拆分,异步处理业务,提高应用性能。
多线程并发产生的问题?

大量的线程让CPU频繁上下文切换带来的系统开销。
临界资源线程安全问题(共享,可变)。
容易造成死锁。
注意:当多个线程执行一个方法时,该方法内部的局部变量并不是临界资源,因为这些局部变量是在每个线程的私有栈中,因此不具有共享性质,不会导致线程安全问题。

可见性
多线程访问同一个变量时,如果有一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。这是因为为了保证多个CPU之间的高速缓存是一致的,操作系统会有一个缓存一致性协议,volatile就是通过OS的缓存一致性协议策略来保证了共享变量在多个线程之间的可见性。

public class ThreadDemo2 {

private static boolean flag = false;

public void thread_1(){
    flag = true;
    System.out.println("线程1已对flag做出改变");
}

public void thread_2(){
    while (!flag){
    }
    System.out.println("线程2->flag已被修改,成功打断循环");
}

public static void main(String[] args) {
    ThreadDemo2 threadDemo2 = new ThreadDemo2();
    Thread thread2 = new Thread(()->{
        threadDemo2.thread_2();
    });
    Thread thread1= new Thread(()->{
        threadDemo2.thread_1();
    });
    thread2.start();
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    thread1.start();
}

}

执行结果

线程1已对flag做出改变
代码无论执行多少次,线程2的输出语句都不会被打印。为flag添加volatile修饰后执行,线程2执行的语句被打印

执行结果

线程1已对flag做出改变
线程2->flag已被修改,成功打断循环
局限:volatile只是保证共享变量的可见性,无法保证其原子性。多个线程并发时,执行共享变量i的i++操作<==> i = i + 1,这是分两步执行,并不是一个原子性操作。根据缓存一致性协议,多个线程读取i并对i进行改变时,其中一个线程抢先独占i进行修改,会通知其他CPU我已经对i进行修改,把你们高速缓存的值设为无效并重新读取,在并发情况下是可能出现数据丢失的情况的。

public class ThreadDemo3 {

private volatile static int count = 0;
public static void main(String[] args) {
    for (int i = 0; i < 10; ++i){
        Thread thread = new Thread(()->{
            for (int j = 0; j < 1000; ++j){
                count++;
            }
        });
        thread.start();
    }
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    System.out.println("count执行的结果为->" + count);
}

}

执行结果

count执行的结果为->9561
注意:这个结果是不固定的,有时10000,有时少于10000。

原子性
就像恋人一样同生共死,表现在多线程代码中程序一旦开始执行,就不会被其他线程干扰要嘛一起成功,要嘛一起失败,一个操作不可被中断。在上文的例子中,为什么执行结果不一定等于10000,就是因为在count++是多个操作,1.读取count值,2.对count进行加1操作,3.计算的结果再赋值给count。这几个操作无法构成原子操作的,在一个线程读取完count值时,另一个线程也读取他并给它赋值,根据缓存一致性协议通知其他线程把本次读取的值置为无效,所以本次循环操作是无效的,我们看到的值不一定等于10000,如何进行更正---->synchronized关键字

public class ThreadDemo3 {

private volatile static int count = 0;
private static Object object = new Object();
public static void main(String[] args) {
    for (int i = 0; i < 10; ++i){
        Thread thread = new Thread(()->{
            for (int j = 0; j < 1000; ++j){
                synchronized (object){
                    count++;
                }
            }
        });
        thread.start();
    }
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    System.out.println("count执行的结果为->" + count);
}

}

执行结果

count执行的结果为->10000
加锁后,线程在争夺执行权就必须获取到锁,当前线程就不会被其他线程所干扰,保证了count++的原子性,至于synchronized为什么能保证原子性,篇幅有限,下一篇在介绍。

有序性
jmm内存模型允许编译器和CPU在单线程执行结果不变的情况下,会对代码进行指令重排(遵守规则的前提下)。但在多线程的情况下却会影响到并发执行的正确性。

public class ThreadDemo4 {

private static int x = 0,y = 0;
private static int a = 0,b = 0;
private static int i = 0;
public static void main(String[] args) throws InterruptedException {
    for (;;){
        i++;
        x = 0;y = 0;
        a = 0;b = 0;
        Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                waitTime(10000);
                a = 1;
                x = b;
            }
        });
        Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                b = 1;
                y = a;
            }
        });
        thread1.start();
        thread2.start();
        thread1.join();
        thread2.join();
        System.out.println("第" + i + "次执行结果(" + x + "," + y + ")");
        if (x == 0 && y == 0){
            System.out.println("在第" + i + "次发生指令重排,(" + x + "," + y + ")");
            break;
        }
    }
}
public static void waitTime(int time){
    long start = System.nanoTime();
    long end;
    do {
        end = System.nanoTime();
    }while (start + time >= end);
}

}

执行结果

第1次执行结果(0,1)
第2次执行结果(1,0)
....
第35012次执行结果(0,1)
第35013次执行结果(0,0)
在第35013次发生指令重排,(0,0)
如何解决上诉问题哪?volatile的另一个作用就是禁止指令重排优化,它的底层是内存屏障,其实就是一个CPU指令,一个标识,告诉CPU和编译器,禁止在这个标识前后的指令执行重排序优化。内存屏障的作用有两个,一个就是上文所讲的保证变量的内存可见性,第二个保证特定操作的执行顺序。

补充
指令重排序:Java语言规范规定JVM线程内部维持顺序化语义,程序的最终结果与它顺序化情况的结果相等,那么指令的执行顺序可以和代码顺序不一致。JVM根据处理器特性,适当的堆机器指令进行重排序,使机器指令更符号CPU的执行特性,最大限度发挥机器性能。

as-if-serial语义:不管怎么重排序,单线程程序的执行结果不能被改变,编译器和处理器都必须遵守这个原则。

happens-before原则:辅助保证程序执行的原子性,可见性和有序性的问题,判断数据是否存在竞争,线程是否安全的依据(JDK5)

1. 程序顺序原则,即在一个线程内必须保证语义串行性,也就是说按照代码顺序执行。

2. 锁规则 解锁(unlock)操作必然发生在后续的同一个锁的加锁(lock)之前,也就是说, 如果对于一个锁解锁后,再加锁,那么加锁的动作必须在解锁动作之后(同一个锁)。

3. volatile规则 volatile变量的写,先发生于读,这保证了volatile变量的可见性,简单 的理解就是,volatile变量在每次被线程访问时,都强迫从主内存中读该变量的值,而当 该变量发生变化时,又会强迫将最新的值刷新到主内存,任何时刻,不同的线程总是能 够看到该变量的最新值。

4. 线程启动规则 线程的start()方法先于它的每一个动作,即如果线程A在执行线程B的 start方法之前修改了共享变量的值,那么当线程B执行start方法时,线程A对共享变量 的修改对线程B可见

5. 传递性 A先于B ,B先于C 那么A必然先于C

6. 线程终止规则 线程的所有操作先于线程的终结,Thread.join()方法的作用是等待当前 执行的线程终止。假设在线程B终止之前,修改了共享变量,线程A从线程B的join方法 成功返回后,线程B对共享变量的修改将对线程A可见。

7. 线程中断规则 对线程 interrupt()方法的调用先行发生于被中断线程的代码检测到中 断事件的发生,可以通过Thread.interrupted()方法检测线程是否中断。

原文地址https://www.cnblogs.com/dslx/p/12690366.html

相关文章
|
27天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
28天前
|
安全 Java UED
深入浅出Java多线程编程
【10月更文挑战第40天】在Java的世界中,多线程是提升应用性能和响应能力的关键。本文将通过浅显易懂的方式介绍Java中的多线程编程,从基础概念到高级特性,再到实际应用案例,带你一步步深入了解如何在Java中高效地使用多线程。文章不仅涵盖了理论知识,还提供了实用的代码示例,帮助你在实际开发中更好地应用多线程技术。
43 5
|
18天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
28天前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
18天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
12天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
12天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
34 3
|
18天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
60 6
|
18天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
52 1
|
26天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
48 6