Flink 新场景:OLAP 引擎性能优化及应用案例

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文由阿里巴巴技术专家贺小令(晓令)分享,主要介绍 Apache Flink 新场景 OLAP 引擎,内容分为以下四部分:背景介绍、Flink OLAP 引擎、案例介绍、未来计划。

摘要:本文由阿里巴巴技术专家贺小令(晓令)分享,主要介绍 Apache Flink 新场景 OLAP 引擎,内容分为以下四部分:

  1. 背景介绍
  2. Flink OLAP 引擎
  3. 案例介绍
  4. 未来计划

一、背景介绍

1.OLAP 及其分类

640.png

OLAP 是一种让用户可以用从不同视角方便快捷的分析数据的计算方法。主流的 OLAP 可以分为3类:多维 OLAP ( Multi-dimensional OLAP )、关系型 OLAP ( Relational OLAP ) 和混合 OLAP ( Hybrid OLAP ) 三大类。

(1)多维 OLAP ( MOLAP )

传统的 OLAP 分析方式
数据存储在多维数据集中

(2)关系型 OLAP ( ROLAP )

以关系数据库为核心,以关系型结构进行多维数据的表示
通过 SQL 的 where 条件以呈现传统 OLAP 的切片、切块功能

(3)混合 OLAP ( HOLAP )

将 MOLAP 和 ROLPA 的优势结合起来,以获得更快的性能

以下将详细介绍每种分类的具体特征。

■ 多维 OLAP ( MOLAP )

MOLAP 的典型代表是 Kylin 和 Druid。

640 1.png

  • MOLAP 处理流程

首先,对原始数据做数据预处理;然后,将预处理后的数据存至数据仓库,用户的请求通过 OLAP server 即可查询数据仓库中的数据。

640 2.png

  • MOLAP 的优点和缺点

MOLAP 的优点和缺点都来自于其数据预处理 ( pre-processing ) 环节。数据预处理,将原始数据按照指定的计算规则预先做聚合计算,这样避免了查询过程中出现大量的临时计算,提升了查询性能,同时也为很多复杂的计算提供了支持。

但是这样的预聚合处理,需要预先定义维度,会限制后期数据查询的灵活性;如果查询工作涉及新的指标,需要重新增加预处理流程,损失了灵活度,存储成本也很高;同时,这种方式不支持明细数据的查询。

因此,MOLAP 适用于对性能要求非常高的场景。

■ 关系型 OLAP ( ROLAP )

ROLAP 的典型代表是 Presto 和 Impala。

640 3.png

  • 处理流程

ROLAP 的处理流程上,用户的请求直接发送给 OLAP server,然后 OLAP server 将用户的请求转换成关系型操作算子,再通过 SCAN 扫描原始数据,在原始数据基础上做过滤、聚合、关联等处理,最后将计算结果返回给用户。

640 4.png

  • ROLAP 的优点和缺点

ROLAP 不需要进行数据预处理 ( pre-processing ),因此查询灵活,可扩展性好。这类引擎使用 MPP 架构 ( 与Hadoop相似的大型并行处理架构,可以通过扩大并发来增加计算资源 ),可以高效处理大量数据。

但是当数据量较大或 query 较为复杂时,查询性能也无法像 MOLAP 那样稳定。所有计算都是临时发生 ( 没有预处理 ),因此会耗费更多的计算资源。

因此,ROLAP 适用于对查询灵活性高的场景。

■ 混合 OLAP ( HOLAP )

混合 OLAP,是 MOLAP 和 ROLAP 的一种融合。当查询聚合性数据的时候,使用MOLAP 技术;当查询明细数据时,使用 ROLAP 技术。在给定使用场景的前提下,以达到查询性能的最优化。

2.Apache Flink 介绍

■ Flink 支持的应用场景

640 5.png

Apache Flink 支持的3种典型应用场景:

(1)事件驱动的应用

  • 反欺诈
  • 基于规则的监控报警

(2)流式 Pipeline

  • 数据 ETL
  • 实时搜索引擎的索引

(3)批处理 & 流处理分析

  • 网络质量监控
  • 消费者实时数据分析

■ Flink 架构及优势

640 6.png

Flink 的整体架构如上图所示,在此架构下,Flink 的优势也十分突出,主要分为6个方面:

(1)统一框架 ( 不区分流处理和批处理 )

  • 用户 API 统一
  • 执行引擎统一

(2)多层次 API

  • 标准 SQL APL
  • Table API
  • DataStream API ( 灵活,无 schema 限制 )

(3)高性能

  • 支持内存计算
  • 支持代价模型优化
  • 支持代码动态生成

(4)方便集成

  • 支持丰富的 Connectors
  • 方便对接现有 Catalog

(5)灵活的 Failover 策略

  • 在 Pipeline 下支持快速 failover
  • 类似 MapReduce、Spark 一样支持 shuffle 数据落盘

(6)易部署维护

  • 灵活部署方案
  • 支持高可用

二、Apache Flink OLAP 引擎

1.为什么 Flink 可以做 ROLAP 引擎?

640 7.png

  • Flink 的核心和基础是流计算,支持高性能、低延迟的大规模计算。
  • Blink 将批看作有限流,批处理是针对有限数据集的优化,因此批处理引擎也是构建在流引擎上 ( 已开源 )。
  • OLAP 是响应时间要求更短的批处理,因此 OLAP 可以看作是一种特殊的批。OLAP 引擎也可以构建在现有的批引擎上。

注:Flink OLAP 引擎目前不带存储,只是一个计算框架。

2.Flink 做 OLAP 引擎的优势

640 8.png

(1)统一引擎:流处理、批处理、OLAP 统一使用 Flink 引擎。

降低学习成本,仅需要学习一个引擎
提高开发效率,很多 SQL 是流批通用
提高维护效率,可以更集中维护好一个引擎

(2)既有优势:利用 Flink 已有的很多特性,使 OLAP 使用场景更为广泛。

使用流处理的内存计算、Pipeline
支持代码动态生成
也可以支持批处理数据落盘能力

(3)相互增强:OLAP 能享有现有引擎的优势,同时也能增强引擎能力

  • 无统计信息场景的优化
  • 开发更高效的算子
  • 使 Flink 同时兼备流、批、OLAP 处理的能力,成为更通用的框架

3.性能优化

OLAP 对查询时间非常敏感,当前很多组件的性能不满足要求,因此我们对 Flink 做了很多相关优化。

■ 服务架构的优化

  • 客户端服务化

下图介绍了一条 SQL 怎么在客户端一步一步变为 JobGraph,最终提交给 JM:

640 9.png

在改动之前,每次接受一个 query 时会启动一个新的 JVM 进程来进行作业的编译。其中 JVM 的启动、Class 的加载、代码的动态编译 ( 如 Optimizer 模块由于需要通过 Janino 动态编译进行 cost 计算 ) 等操作都非常耗时 ( 需要约3~5s )。因此,我们将客户端进行服务化,将整个 Client 做成 Service,当接收到用户的 query 时,无需重复各项加载工作,可将延时降低至 100ms 左右。

  • 自定义 CollectionTableSink
    640 10.png

这部分优化,源于 OLAP 的一个特性:OLAP 会将最终计算结果发给客户端,通过JobManager 转发给 Client。假如某个 query 的结果数据量很大,会让 JobManager OOM ( OutOfMemory );如果同时执行多个 query,也会相互影响。

因此,我们从新实现了一个 CollectionTableSink,限制数据的条数和数据大小,避免出现 OOM,保证多个 Query 同时运行时的稳定性。

  • 调度优化

640 11.png

在 Batch 模式下的调度存在以下问题:

  • 使用 Lazy_from_sources 模式调度,会导致整体运行时间较长,也可能造成死锁。
  • RM ( Resource Manager ) 按 OnDemand 方式分配 Slot 需求,也会造成死锁。
  • RM 以单线程同步模式向 TM ( Transaction Manager ) 分配 Slot 请求,会造成等待时间更长。

注:调度死锁是指在资源有限的情况下,多个 Job 同时运行时,如果多个 Job都只申请到了部分资源并没有剩余资源可以申请,导致 Job 没法继续执行,新的 Job 也没法提交。

针对上述问题,我们提出了以下几点改动:

  • 采用 Eager 调度模式 ( 确保所有的资源都申请到后才开始运行 )。
  • 使用 FIFO ( 先进先出队 ) 模式申请资源 ( 确保当前 Job 的资源分配结束后才开始下一个 Job 的资源分配 )。
  • 将单线程同步模式改为多线程异步模式,减少任务启动时间和执行时间。

■ 针对 source 的优化

在 ROLAP 的执行场景中,所有数据都是通过扫描原始数据表后进行处理;因此,基于 Source 的读取性能非常关键,直接影响 Job 的执行效率。

  • Project&Filter 下堆

640 12.png

像 Parquet 这类的列存文件格式,支持按需读取相所需列,同时支持 RowGroup 级别的过滤。利用该特性,可以将 Project 和 Filter 下推到 TableSource,从而只需要扫描 Query 中涉及的字段和满足条件的 RowGroup,大大提升读取效率。

  • Aggregate 下堆

640 13.png

这个优化也是充分利用了 TableSource 的特性:例如 Parquet 文件的 metadata 中已经存储了每个 RowGroup 的统计信息 ( 如 max、min等 ),因此在做 max、min 这类聚合统计时,可直接读取 metadata 信息,而不需要先读取所有原始数据再计算。

■ 在没有统计信息场景下做的优化

  • 消除 CrossJoin

640 14.png

CrossJoin 是没有任何 Join 条件,将 Join 的两张表的数据做笛卡尔积,导致 Join 的结果膨胀非常厉害,这类 Join 应该尽量避免。我们对含有 CrossJoin 的 Plan 进行改写:将有 join 条件的表格先做 join ( 通常会因为一些数据 Join 不上而减少数据 ),从而提高执行效率。这是一个确定性的改写,即使在没有统计信息的情况下,也可以使用该优化。

  • 自适应的 Local Aggregate

640 15.png

通常情况下,两阶段的 Aggregate 是非常高效的,因为 LocalAggregate 能聚合大量数据,导致 Shuffle 的数据量会变少。但是当 LocalAggregate 的聚合度很低的时候, Local 聚合操作的意义不大,反而会浪费 CPU。

在没有任何统计信息的情况下,优化器没法决定是否要产生 LocalAggregate 算子;因此,我们采用运行时采样的方式来判断聚合度,如果聚合度低于设定的阈值,我们将关闭聚合操作,改为仅做数据转发;经我们测试,部分场景有 30% 的性能提升。

4.测试结果

640 16.png

上图是 Flink 和 Presto基于 1T 数据做的 SSB ( Star Schema Benchmark ) 测试,从图中可以看出 Flink 和 Presto 整体上不相上下,甚至有些 Query Flink 性能优于Presto。

注:Flink OLAP 从开始到嘉宾分享时,只有3个月时间。

案例介绍

1.Flink OLAP 在数据探查上的应用

640 17.png

上图描述了一个数据湖应用的完整架构,Flink OLAP 主要用于"数据探查"。

数据探查是对数据结构做智能判断,给出数据的探查结果,快速了解数据的信息和质量情况。即用户可以在管控平台上了解数据湖中任意一份数据的数据特性。用户通过 Web 交互操作选择相应的表和指标后立即展示相关结果指标,因此要求低延迟、实时反馈。而且数据湖中很多数据没有任何统计信息;前述的各种查询、聚合层面的优化,主要为这类场景服务。

2.整体架构

640 18.png

上图是这类应用的整体架构。整套服务托管到 Kubernetes 上,最终访问的数据是OSS。

未来计划

当前,Flink OLAP 引擎性能优化及应用主要是基于内部 Flink,后续工作主要分为以下三块:

  1. 推回社区:目前所有工作都是基于内部 Flink,希望推回社区;
  2. 资源隔离:后期很多功能的开发和优化会围绕多 Query 运行时的"资源隔离";
  3. 优化&性能:围绕 OLAP 的特性,在此场景下会进一步做优化和性能提升等方面的工作。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
存储 运维 搜索推荐
实时数仓Hologres发展问题之Hologres在无人车送货场景中的应用如何解决
实时数仓Hologres发展问题之Hologres在无人车送货场景中的应用如何解决
44 2
|
23天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
797 17
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
1月前
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
180 8
Flink实时湖仓,为汽车行业数字化加速!
|
25天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
52 1
|
2月前
|
存储 数据采集 OLAP
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
349 7
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
|
1月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
43 0
|
1月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
183 0
|
1月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
48 0
|
1月前
|
大数据 流计算
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
46 0
|
3月前
|
存储 分布式计算 数据挖掘
实时数仓 Hologres 问题之适用于业务场景的实时数仓如何搭建
实时数仓 Hologres 问题之适用于业务场景的实时数仓如何搭建

相关产品

  • 实时计算 Flink版
  • 下一篇
    无影云桌面