创建多个绘图区 | Python 数据可视化库 Matplotlib 快速入门之十一

简介: 本节介绍了面向对象的画图方法,在同一个图的不同坐标系绘制两个城市的同一时段的温度变化情况的步骤。

其他辅助显示层完善折线图 | Python 数据可视化库 Matplotlib 快速入门之十

多个坐标系显示-plt.subplots(面向对象的画图方法)

如果我们想要将上海和北京的天气图显示在同一个图的不同坐标系当中,效果如下:

image.png

可以通过subplots函数实现(旧的版本中有subplot, 使用起来不方便), 推荐subplots函数。

  • matplotlib.pyplot.subplots(nrows=1,ncols=1, **fig_kw) 创建一个带有多个axes(坐标系/绘图区) 的图

现在是1行2列,我们对代码做出修改:

figure, axes = plt.subplots(nrows=1, ncols=2, **fig_kw)
axes[0].方法名()
axes[1].方法名()
Parameters:

nrows, ncols : int, optional, default: 1, Number of rows/coLumns of the subplot grid.
**fig_kw : All additional keyword arguments are passed to the figure() call.

Returns:
fig : 图对象
ax :
    设置标题等方法不同:
    set_xticks
    set_yticks
    set_xlabel
    set_ylabel

关于axes子坐标系的更多方法:参考https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

  • 注意:plt.函数名()相当于面向过程的画图方法,axes.set_方法名()相当于面向对象的画图方法。

我们来对此需求编写代码:
收集到上海当天的温度变化情况,温度在15度到18度
收集到北京当天的温度变化情况,温度在1度到3度

import random
# 1、准备数据 x,y
x = range(60)
y_shanghai  = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=80)

# 3、绘制图像
axes[0].plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
axes[1].plot(x, y_beijing, color = "b", label = "北京")

# 显示图例
axes[0].legend()
axes[1].legend()

# 修改x,y刻度
# 准备x的刻度说明
x_lable = ["11点{}分".format(i) for i in x] 
axes[0].set_xticks(x[::5], x_lable[::5])
axes[0].set_yticks(range(0, 40, 5))
axes[1].set_xticks(x[::5], x_lable[::5])
axes[1].set_yticks(range(0, 40, 5))

# 添加网格显示
axes[0].grid(True, linestyle = "--", alpha = 0.5)
axes[1].grid(True, linestyle = "--", alpha = 0.5)

# 添加描述信息
axes[0].set_xlable("时间变化")
axes[0].set_ylable("温度变化")
axes[0].set_title("上海11点到12点每分钟的温度变化状况")
axes[1].set_xlable("时间变化")
axes[1].set_ylable("温度变化")
axes[1].set_title("北京11点到12点每分钟的温度变化状况")
# 4、显示图
plt.show()

执行结果:

image.png

此时可以发现横坐标跟我们原本设置的不一致,此时是因为面向对象方法调用的问题,我们可以查询上面的API文档。
通过文档查询可以发现,set_xticks的第二个参数是bool值,所以我们需要修改,改为axes.set_xticklabels ,可以添加字符串。

image.png
image.png

修改代码:

# 修改x,y刻度
# 准备x的刻度说明
x_lable = ["11点{}分".format(i) for i in x] 
axes[0].set_xticks(x[::5])
axes[0].set_xticklabels(x_lable[::5])
axes[0].set_yticks(range(0, 40, 5))
axes[1].set_xticks(x[::5])
axes[1].set_xticklabels(x_lable[::5])
axes[1].set_yticks(range(0, 40, 5))

执行结果:

image.png

配套视频课程,点击这里查看

获取更多资源请订阅Python学习站

相关文章
|
18天前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
214 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
11天前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
57 0
|
1月前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
180 1
|
1月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
25天前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
28天前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
82 0
|
10天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
12天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
109 18
|
1月前
|
JSON 安全 API
Python处理JSON数据的最佳实践:从基础到进阶的实用指南
JSON作为数据交换通用格式,广泛应用于Web开发与API交互。本文详解Python处理JSON的10个关键实践,涵盖序列化、复杂结构处理、性能优化与安全编程,助开发者高效应对各类JSON数据挑战。
135 1

热门文章

最新文章

推荐镜像

更多