Python机器学习小知识:pandas.apply-阿里云开发者社区

开发者社区> 开发与运维> 正文

Python机器学习小知识:pandas.apply

简介: pandas.apply函数是Python在机器学习处理数据时常用的一个方法。apply函数会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。该函数定义如下:DataFrame.apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds)其中,func 参数是函数名,相当于C/C++的函数指针。

pandas.apply函数是Python在机器学习处理数据时常用的一个方法。apply函数会自动遍历每一行DataFrame的数据,最后将所有结果组合成一个Series数据结构并返回。该函数定义如下:
DataFrame.apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds)
其中,func 参数是函数名,相当于C/C++的函数指针。func函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据,结构传入给func函数中,这样会在定义的func函数中实现对Series不同属性之间的计算,返回结果。
具体定义请参考:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html

以下为一些例子:

df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
df
A B
0 4 9
1 4 9
2 4 9

df.apply(np.sqrt)
A B
0 2.0 3.0
1 2.0 3.0
2 2.0 3.0

df.apply(np.sum, axis=0)
A 12
B 27
dtype: int64

df.apply(np.sum, axis=1)
0 13
1 13
2 13
dtype: int64

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
开发与运维
使用钉钉扫一扫加入圈子
+ 订阅

集结各类场景实战经验,助你开发运维畅行无忧

其他文章