没有绿幕,AI也能完美视频抠图,发丝毕现,毫无违和感 | CVPR

简介:

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


在阳台上给小姐姐拍个视频:

01

再把她P到喷泉广场:

02

需要几步?

现在,无需绿幕,AI 就能搞定这件事。

就像这样,随便用手机给小姐姐拍张照片,再在同一地点拍张不带人像的背景图。

03

深度神经网络就能自动分析出 alpha 遮罩和前景色,把小姐姐的发丝都抠得根根分明。

04

视频也是如此。

让憋着笑的同事在实验室白板前表演一段广播体操,再给背景板单独来一张,就可以无中生有把同事“转移”到大厅里,引来路人围观了。

05

这是来自华盛顿大学的一项最新研究,无需绿幕,无需手动创建 Trimap,一个具有对抗性损失的深度神经网络,就能准确预测遮罩,给照片和视频抠图。

论文已经中了 CVPR 2020,代码即将开源。

深度抠图网络 + 鉴别器网络

那么,这样的抠图特技是如何炼成的?

研究人员表示,是具有对抗性损失的深度网络 + 判断合成质量的鉴别器。

深度抠图网络

研究人员先在 Adobe Matting 数据集中的非透明对象子集上对深度神经网络 G 进行了监督训练。

输入是带人像的照片 I 和照片中的背景 B’,以及人像软分割 S 和 运动先验 M(仅对视频而言)。

需要注意的是,在真实环境中,B’ 是通过在真实背景的前景区域随机加入噪声而生成的。

依据输入,网络会预测出 alpha 遮罩 α 和前景图像 F。

06

研究人员提出用背景切换块(Context Switching block,CS block)来取代基于残差块的编码器-解码器。

有什么不同?

举个例子,当人的一部分与背景相匹配的时候,网络会将更多精力放在该区域的细分线索上。

G 网络有四个不同的编码器,分别适用于 I,B’,S 和 M 四种输入。每个编码器分别生成256个通道的特征图。

通过 1×1 卷积,BatchNorm 和 ReLU,I 中的图像特征分别与 B’,S 和 M 结合,每一对组合都会生成 64 通道特征。

最后,将这 3 个 64 通道特征与原始的 256 通道图像特征组合在一起,生成编码后的特征,并传递到由残差块和编码器组成的其余网络。

07

在未标记真实数据上的对抗训练

CS block 和数据增强的结合,可以有效弥合真实图像与 Adobe数据集创建的合成图像之间的差距,但真实图像中仍然有存在一些难点:

  • 将手指、手臂、头发周围的背景痕迹复制到遮罩中;
  • 分割失败;
  • 前景色的重要部分与背景颜色接近;
  • 人像照片和背景照片之间没有对准。

为了应对这些问题,研究人员还提出了一种自监督方案,从未标记的真实数据(真实图像 + 背景)中学习。

用深度抠图网络 G 的单独副本 GReal 组成对抗网络,对抗网络会生成类似于 GAdobe 输出的遮罩,而鉴别器网络 D 会判别结果的真假。

研究人员使用真实输入(手机拍摄)联合训练 GReal 和 D,并用 GAdobe 来提供监督。

与SOTA方法的对比

研究人员将新方法与以下几种 SOTA 方法进行了定性比较:

  • 基于 Trimap 的 Context Aware Matting (CAM)和 Index Matting(IM);
  • 自动遮罩算法 Late Fusion Matting(LFM);

08

09

不难看出,效果改进着实明显。

你觉得怎么样?不妨mark一下,坐等开源。

毕竟有些大胆的想法,可能已经在酝酿了,是吧?

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-08
本文作者:鱼羊
本文来自:“量子位公众号”,了解相关信息可以关注“公众号 QbitAI”

相关文章
|
1月前
|
人工智能 编解码 API
【选择”丹摩“深入探索智谱AI的CogVideoX:视频生成的新前沿】
【选择”丹摩“深入探索智谱AI的CogVideoX:视频生成的新前沿】
|
2月前
|
人工智能
防AI换脸视频诈骗,中电金信联合复旦提出多模态鉴伪法,还入选顶会ACM MM
【9月更文挑战第26天】中电金信与复旦大学合作,提出一种基于身份信息增强的多媒体伪造检测方法,并入选ACM MM国际会议。该方法利用身份信息作为检测线索,构建了含54位名人324个视频的多模态伪造数据集IDForge,设计了参考辅助的多模态伪造检测网络R-MFDN,显著提升了检测性能,准确率达到92.90%。尽管如此,该方法仍存在一定局限性,如对非英语国家数据及无明确身份信息的视频检测效果可能受限。
61 4
|
1月前
|
人工智能 自然语言处理 搜索推荐
Sora - 探索AI视频模型的无限可能
这篇文章详细介绍了Sora AI视频模型的技术特点、应用场景、未来展望以及伦理和用户体验等方面的问题。
27 0
|
3月前
|
机器学习/深度学习 人工智能 编解码
|
3月前
|
人工智能 搜索推荐
影视与游戏行业AI视频制作的第3步:为角色生成说话视频
继 影视与游戏行业AI视频制作实战:第一步,角色形象设计的一致性以及影视与游戏行业AI视频制作实战:第二步,为角色生成个性化语音 后,实现角色生动化的下一步动作就是能让图像动起来。
|
3月前
|
人工智能 自然语言处理 语音技术
使用AI识别语音和B站视频并通过GPT生成思维导图原创
AI脑图现新增语音及B站视频内容识别功能,可自动生成思维导图。用户可通过发送语音或上传语音文件,系统自动转换为文本并生成结构化的思维导图;对于B站视频,仅需提供链接即可。其工作流程包括:语音转文本、文本结构化、生成Markdown、Markdown转思维导图HTML以及输出最终的思维导图图片给用户。
81 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC-基于EAS服务快速部署一个AI视频生成
AIGC-基于EAS服务快速部署一个AI视频生成
|
3月前
|
机器学习/深度学习 人工智能 算法
|
4月前
|
人工智能 数据安全/隐私保护 计算机视觉
旷视开源的AI人像视频生成太炸了!输入照片即可模仿任意表情包
【7月更文挑战第6天】旷视科技开源AI模型MegActor,以照片生成逼真人像视频,模仿表情包。基于条件扩散模型,解决身份泄露和背景干扰问题,使用合成数据、图像分割、CLIP编码及风格迁移技术。虽有视频质量、隐私风险及计算资源限制,但对动画和虚拟偶像行业带来革新。[链接](https://arxiv.org/abs/2405.20851)
103 3
|
5月前
|
人工智能 算法 计算机视觉
无论真实还是AI视频,摩斯卡都能重建恢复4D动态可渲染场景
【6月更文挑战第30天】摩斯卡系统革命性地从单视角视频重建4D动态场景,融合2D视觉模型与物理优化,实现渲染。利用“Motion Scaffold”表示几何、外观和运动,即使在多视角输入困难时也能保证高质量重建与渲染。虽有输入质量和计算资源限制,但其创新性提升了动态场景处理的实用性和可控性。[arXiv:2405.17421](https://arxiv.org/pdf/2405.17421)
59 2

热门文章

最新文章