应用统计学与R语言实现笔记(番外篇三)——缺失值的相关系数分析

简介: 昨天刚好有位同学来咨询R语言里计算相关系数的一些问题,所以来谈谈关于缺失值的相关系数分析问题,主要是在R语言中如何处理含缺失值数据的相关系数分析。

昨天刚好有位同学来咨询R语言里计算相关系数的一些问题,所以来谈谈关于缺失值的相关系数分析问题,主要是在R语言中如何处理含缺失值数据的相关系数分析。

1 问题描述

相关分析可以说是数据分析以及探索性分析的基础。一般拿到手的数据,起手先来一波相关分析。同学遇上的问题如下:类似如下的数据。这里的数据是我利用随机分布随机造出来的,跟我同学的数据的一些基础分布特征是相似的。其实关键就是第四列数据有缺失数据。

然后在计算具体的相关系数时发现了一些问题。

可以清楚地看到在只计算b和c的相关系数的情况下,相关系数与p值分别为0.24和0.13,但当b,c和d都参与运算的情况下,相关系数和p值就变成了0.19和0.24。造成差别的原因是什么呢?

2 R语言相关分析中的缺失值处理原理

经过检查,关键在于use的参数的选择。use可以设置的参数主要包括pairwise,complete,complete.obs,pairwise.complete.obs,everything等。这里分别来看具体的含义。事实上这些都是针对相关系数公式里的协方差计算的设置。

  • pairwise:使用成对样本计算。
  • complete/complete.obs:必须选择完整的样本计算,目前没发现这两个有什么区别。
  • pairwise.complete.obs:通过在成对的基础上省略具有缺失值的行而形成的向量为每对列计算相关性。
  • everything:不对缺失值做任何处理,因此缺失值结果会直接传递给相关系数矩阵与p值计算。也就是说含有缺失值NA的变量无法计算出相关系数与p值。

由于前面提到这是针对协方差的计算,所以可以再查看R里面计算协方差的函数——cov的帮助文档协助理解。这是原文。

If use is "everything", NAs will propagate conceptually, i.e., a resulting value will be NA whenever one of its contributing observations is NA. If use is "all.obs", then the presence of missing observations will produce an error. If use is "complete.obs" then missing values are handled by casewise deletion (and if there are no complete cases, that gives an error). "na.or.complete" is the same unless there are no complete cases, that gives NA. Finally, if use has the value "pairwise.complete.obs" then the correlation or covariance between each pair of variables is computed using all complete pairs of observations on those variables. This can result in covariance or correlation matrices which are not positive semi-definite, as well as NA entries if there are no complete pairs for that pair of variables. For cov and var, "pairwise.complete.obs" only works with the "pearson" method. Note that (the equivalent of) var(double(0), use = *) gives NA for use = "everything" and "na.or.complete", and gives an error in the other cases.

整体说起来还是比较抽象。往下我们可以通过一些简单的R语言计算来进行协助理解。当然这个案例并非我独创,我在谷歌上做了相关搜索,发现了一个关于描述这个相关系数计算处理缺失值非常不错的网页。我相当于是翻译+搬运工。

3 “Pairwise-complete correlation considered dangerous”案例

网页标题为“Pairwise-complete correlation considered dangerous”,翻译过来就是成对完全相关分析可能造成一些错误结果,作者为B. W. Lewis。

这个案例首先构造了一个数据。3列 x 5行的矩阵,其中第三列的第一行和第二行矩阵元素是缺失值NA。

x <- matrix(c(-2,-1,0,1,2,1.5,2,0,1,2,NA,NA,0,1,2),5)

接下来我们分别用不同use的参数设置来查看结果。这里作者原文使用cor函数,但是我们前面的案例是使用pysch的corr.test函数,这里就还是采用这个函数进行对应计算。而由于corr.test()对矩阵的计算似乎不是很友好,我们做个类型转换,将矩阵转为数据框,也就是R语言的data.frame。

#数据转换
xu <- data.frame(x)
colnames(xu) <- c("a", "b", "c")

#计算对应的相关系数矩阵
corr.test(xu, use = "everything", , adjust = 'none')
corr.test(xu, use = "pairwise", adjust = 'none')
corr.test(xu, use = "complete.obs", adjust = 'none')
corr.test(xu, use = "pairwise.complete.obs", adjust = 'none')

use等于everything时候的输出结果。所谓的传播就是,含有NA的第三列与第一列和第二列的相关系数只能为NA,只要数据有NA就无法计算像相关系数。

use等于pairwise时候的输出结果,可以发现a和b的相关系数为0,a,b和c的相关系数为1。那么我们来解析下具体的计算。

相关系数的公式如下,然后可以计算下5个样本下的协方差和并且绘制散点图。

$$r=\frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}}$$

plot(xu[,1], xu[,2], xlab = "a", ylab = "b", col = 'red', pch = 16)
cov(xu[,1], xu[,2])

协方差为0,所以相关系数为0。这就得到结果了。

pairwise计算的方式如下:由于a和b是没有任何缺失值,5个值可以完全配对,所以在计算的时候a和b的相关系数是基于这5对数据计算,而对于a和c以及b和c的相关系数计算,由于c有缺失数据,可以完全配对的数据仅有三对,仅仅基于这三对配对样本计算相关系数。这样子对应计算出来的相关系数就是1了,因为这些数据完全一致。因此就像Lewis先生说的一样,由于在计算相关系数的时候,样本不统一(在本案例中a和b的相关系数计算是5对配对样本,a和c以及b和c的相关系数计算是3对配对样本),事实上这样计算的相关系数不具备可比性,也可能混淆原来数据的关系。

现在我们再来看complete.obs,可以发现这是a,b,c的相关系数全为1。这是怎么计算出来的呢?根据对数据的观察可以发现,矩阵数据的第三到第五行的每一列数据都是相同的。

complete.obs的计算方式:由于c有缺失数据,在计算前必须去除掉所有NA的行,也就是去除掉第一行和第二行的所有数据再进行相关系数的计算。这样子所有a,b,c三个变量都仅有3个数据。而且是全部一致的变量。因此这就是完美的完全相关(r=1)。

至于pairwise.complete.obs结果与pairwise是一样的结果,我目前没有发现太大的差别。

因此正如Lewis先生说的,有时候完全匹配样本的分析反而容易造成对数据的曲解。当然最好的方式是获取更多的观测样本。

最后回到同学的数据,为什么只针对b和c做相关分析的结果与针对b,c,d做相关分析的时候,b和c的相关系数有差异呢?

我们可以看到存在差异的语句是由于使用了complete.obs,因为complete.obs会删除NA数据,当仅针对b和c做相关分析的时候,不存在NA数据,所有是针对所有41个数据计算得到的相关系数。而由于d存在NA数据,在对b,c和d做相关分析的时候,必须删除那一列,所以b,c和d都是仅剩下40个数据计算得到的相关系数。所有有差异是可以理解的。而当采用pairwise的时候,即使有NA数据存在,b和c的相关系数计算也不会因为有NA而去除掉b和c对应的那行数据,所有前后样本数据量一致,相关系数自然不会有变化。

另一个角度反应出来,d那一行的数据对这三个变量的数学关系影响还是比较大的,因为有些情况随机模拟出来的数据,也不一定会有明显的相关系数差异。因此针对缺失值如何处理还是要根据数据具体情况而言。由于我之前通常在相关分析前就去除了NA值,所以我也没遇到过这个情况。这其实是非常有意思的统计分析诊断。

相同数据,不同use方法的相关系数矩阵可视化。

本文使用的代码,我会放到我应用统计学与R语言实现笔记的开源github仓库上,有兴趣的同学欢迎自行下载。

Note-of-Applied-Statistics-with-R

参考链接:

Pairwise-complete correlation considered dangerous

目录
相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
存储 数据可视化 数据挖掘
R语言在生物信息学中的应用
【10月更文挑战第21天】生物信息学是生物学、计算机科学和信息技术相结合的交叉学科,主要研究生物大分子信息的存储、处理、分析和解释。R语言作为一种强大的统计分析工具,被广泛应用于生物信息学领域。本文将介绍R语言在生物信息学中的应用,包括基因组学、转录组学、蛋白质组学、代谢组学等方面,帮助读者了解R语言在生物信息学中的重要性和应用前景。
103 4
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
62 3
|
3月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
131 3
|
3月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
69 2
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化