5G时代下端侧AI势必大火!阿里技术专家在线解读

简介: 人工智能发展已进入“落地为王”阶段,端侧 AI 相比云侧 AI,具有低延时、保护数据隐私、节省云端计算资源等优势,现已成为端侧技术新热点,并且紧贴用户在 AR 特效、搜索推荐等方面有诸多创新应用。近日,阿里巴巴淘系技术部资深无线开发专家吕承飞(吕行)受 InfoQ 邀约,为大家介绍端侧 AI 的现状以及在阿里的实践。本文将回顾端侧 AI 的发展过程,以阿里端侧 AI 发展为例展望端侧 AI 的未来。

屏幕快照 2020-03-26 下午6.13.04.png

嘉宾|吕承飞(吕行)
出品|InfoQ&阿里巴巴新零售淘系技术部

嘉宾简介:吕承飞(花名:吕行),阿里巴巴资深无线开发专家。2013 年加入淘宝,经历手机淘宝超级 App 技术演化完整过程,主导手淘 iOS 架构升级、架构治理、稳定性以及性能等相关工作。2017 年开始端侧 AI 方向探索,现负责端智能团队,构建开源端侧推理引擎 MNN,淘宝 AR 技术框架和美妆 AR 等创新应用,端计算技术框架和搜索推荐等创新应用。

前言

人工智能发展已进入“落地为王”阶段,端侧 AI 相比云侧 AI,具有低延时、保护数据隐私、节省云端计算资源等优势,现已成为端侧技术新热点,并且紧贴用户在 AR 特效、搜索推荐等方面有诸多创新应用。近日,阿里巴巴淘系技术部资深无线开发专家吕承飞(吕行)受 InfoQ 邀约,为大家介绍端侧 AI 的现状以及在阿里的实践。本文将回顾端侧 AI 的发展过程,以阿里端侧 AI 发展为例展望端侧 AI 的未来。

在将于 7 月份举行的 GMTC 北京 2020 上,吕承飞(吕行)老师作为“端侧 AI ”的专题出品人,策划了端侧 AI 专题的方向,将为大家介绍前沿的端侧 AI 创新应用、端侧 AI 技术、端侧 AI 开放能力,让大家在听完之后能结合自己业务快速上手,创造无限可能。

端侧 AI 介绍和发展回顾

▐ 端侧 AI 正从尝试应⽤变成驱动业务创新的核⼼推动⼒之⼀

AI 在智能⼿机和智能设备中应⽤越来越广泛,⽐如短视频 App 中的 AR 特效、⼈脸⻔禁等。

随着端上算⼒不断增强和算法快速发展,特别是模型压缩技术和⼩模型算法设计不断成熟,在端侧运⾏算法模型成为可能。

端侧 AI 简单说就是在终端设备做机器学习算法应⽤,这⾥“终端设备”主要是指⼿机,当然也包括不断出现的各种智能设备和 IoT 设备。⽬前,端侧 AI 主要是推理运⾏,当然也慢慢出现了在终端设备做训练,⽐如联合学习、迁移学习等。相较于云侧 AI,端侧 AI 具有低延时、兼顾数据隐私、节省云端计算资源,以及不依赖⽹络提供稳定服务等显著优势。

自 2017 年以来,**端侧 AI 在底层技术和业务应⽤等⽅⾯都取得了快速发展,逐渐从尝试性应⽤变成驱动业务创新的核⼼推动⼒之⼀。
**
基于端侧 AI 的⼈脸检测、⼈体姿态、⼿势等算法补⻬了 AR 特效中的交互能⼒,从⽽可以实现各种有趣好玩的 AR 应⽤,且在短视频 App 中⼴泛应⽤。基于端侧 AI 的实时⽤户感知和理解能⼒,对于搜索推荐、安全⻛控、系统优化等业务都有帮助。在智能硬件 IoT 领域、⼈脸考勤机、 智能⻔禁锁,以及⻋载 ADAS 等应⽤也都跟端侧 AI 相关。

从技术发展来看:
端侧推理引擎逐步成熟,基本解决了算法模型在端侧能不能跑的问题,⽽且国内框架相⽐国外具有普遍的优势。国内开源的 NCNN、MNN、MACE 以及 Paddle-Lite 等经过不断打磨优化已经做的⾮常不错。国外 TFLite 和 Pytorch 也开始重视端侧推理,重点投⼊,性能等提升明显。
除推理引擎之外,端侧 AI 应⽤和部署仍存在较⾼⻔槛,⾏业公司逐步有⼀些尝试。⽐如,阿⾥淘系在 2020 年 3 ⽉开放 MNNKit,包含⼈脸检测、⼿势识别等算法能⼒。百度和⼩⽶也有计划开源多种算法模型,⽐如,百度最近开源的含⼝罩⼈脸检测及分类模型。另外,华为通过⼀站式开发平台 ModelArts 希望实现端、边、云全场景的 AI 部署。

总的来说,虽然端侧 AI ⽬前仍处于发展初期,但是相关应⽤已经展示出其巨⼤潜⼒,希望更多⼈能够了解和应⽤这项技术。这也是我们本次⼤会端侧 AI 专题的价值,通过介绍端侧 AI 最新技术进展和⾏业案例,给⼴⼤开发人员提供参考,从⽽使他们能结合⾃⼰业务场景进⾏探索和尝试,获得业务突破。

阿⾥端侧 AI 发展状况

▐ 端侧 AI 业务应⽤场景逐步增多并取得明确价值,开源推理引擎 MNN

最早从 2016 年开始公司内部就有业务尝试端侧 AI 能⼒,并在 2017 年开始有计划的建设和探索端侧 AI ⽅向,包括我⾃⼰和所在的 MNN 团队,也是从那个时候开始尝试端侧 AI ,经过这⼏年的发展,端侧 AI 已经成为移动 App 的基础能⼒,助⼒业务发展和创新突破,并且也取得了不错的业务结果。

⽬前,公司⾥绝⼤多数移动 App 都有使⽤端侧 AI,2019 年初统计使⽤ MNN 的 App 就超过 20 个。以⼿淘为例分享⼏个数据:10 多个场景应⽤,超过 25 个模型运⾏,每天运⾏机器学习和深度学习算法次数超过 500 亿次。

应⽤场景

  • ⼿淘信息流推荐
    基于端侧 AI 技术可以实现更加实时的⽤户意图识别,做出更加精准的内容推荐,甚⾄在端上训练实现“千⼈千模”,有效提升了原有个性化推荐技术,该技术已在 2019 年双 11 中⼤规模应⽤并取得不错业务结果。对信息流的点击量和 GMV 都带来了明显提升。
  • ⼿淘美妆 AR
    基于端侧 AI 的⼈脸检测能⼒结合 AR 应⽤可以给消费者更加真实的购物体验。2019 年双 11 美妆⾏业推出的 AR 在线试妆功能,能够让⽤户模拟上妆,有效提升了线上购物体验。

除此之外,⽀付宝扫福、⼿淘拍⽴淘、智能 Push 以及闲⻥智能发布等都是端侧 AI 的典型应⽤。

技术建设

总体来说,因为我们起步早,体系也相对完整,技术结果显著。基本已经解决算法模型在端侧能不能跑以及跑得好、跑得快等问题,现在我们正在解决规模化应⽤和业务创新快速验证的问题。具体从如下⼏⽅⾯简单来说:

  • 端侧推理引擎

我们有开源推理引擎 MNN,以及⽀付宝定制化引擎 xNN,在性能优化、 异构多机型适配,模型压缩等⽅⾯有⽐较多积累,⽬前也已具备训练能⼒并⽀撑业务端上训练任务。

  • 端 AI 算法能⼒
    公司各算法团队已经沉淀⼈脸检测、⼿势识别、⼈体⻣骼、OCR 等常⽤能⼒,并且构建统⼀开箱即⽤算法集⽀撑业务快速接⼊应⽤。
  • 端 AI ⼯作台和研发体系
    淘系技术团队正在探索和建设⼀站式端侧 AI ⼯作平台"MNN⼯作台",降低端侧 AI 应⽤⻔槛,实现业务快速创新试错。

端侧 AI 未来展望

▐ 端侧 AI 仍处于⼤规模应⽤爆发前夜,未来结合 AR、IoT 等技术迎来更⼤发展

端侧 AI 的应⽤会向更⼤范围、更多领域铺开并切实给业务带来价值。从⼤公司尝鲜到普通公司逐步推开,它会真正成为⼀项基础能⼒;从视觉算法到⼤数据、⾃然语⾔处理、语⾳等更多算法领域的应用,例如:⾕歌发布的 ALBERT 在移动端部署应⽤已经成为可能;从智能硬件到 IoT 设备,近来 TinyML 技术也在不断成熟,正在成为新的蓝海,具体可以参⻅ TinyML2020 有关内容。

端侧 AI 相⽐云侧 AI ⼀站式机器学习平台整体技术体系还不够完善,针对⾮专业算法同学如何能够⾃主解决数据和算法问题产出模型,针对⼤前端和算法同学如何提⾼协同效率等些问题的解决势必会进⼀步推动整个端侧 AI 的发展。淘系内部基于 MNN 正在构建端侧 AI 的完整研发体系,包括端 AI 运⾏时 +⼯作台 + 服务端,后续也会逐步向业界开放,⼀起让端侧 AI 获得更⼤发展。

5G 技术已经到来,我觉得 5G 技术的发展也会促进端侧 AI 的发展。举例来说,5G 来了,⾳视频数据会进⼀步膨胀,当⽹络不是瓶颈,服务端算⼒就会成为瓶颈,那么本地的视频内容理解、预处理就显得尤为重要,更实时、更低成本的⽅案肯定会被应⽤,业界有些公司已经开始⾏动。结合 AR 来说,端侧 AI 补充了 AR 的交互能⼒,5G 补充了 AR ⽹络传输能⼒,让⾼质量的 AR 素材传输变成可能。那么,结合 5G + 端侧 AI + AR 技术可能会出现⼀些有意思的应⽤。

总的来说,端侧 AI 经过⼏年发展,虽然在技术建设和业务应⽤都有了⼀些进展,但仍处于⼤规模应⽤爆发前夜。随着算⼒和算法不断进步,应⽤⻔槛的不断降低,结合 AR、视频、5G 以及 IoT 等技术,端侧 AI 必将迎来更⼤的发展。

We are hiring

淘宝基础平台部-端智能团队欢迎移动端计算优化工程师和推理引擎架构师的加入。对新技术感兴趣,善于创新突破,渴望用新技术给用户带来创新体验的同学请联系我们。

简历投递至吕行:chengfei.lcf@alibaba-inc.com
关注「淘系技术」微信公众号,一个有温度有内容的技术社区~

公众号二维码.jpg

相关文章
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
35 3
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
6天前
|
物联网 5G 智能硬件
介绍频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术
在无线通信领域,专业术语是理解技术的关键。本文详细介绍了频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术,还涵盖了信号传播、信道容量、信噪比等深入概念。通过本文,你将掌握无线技术的核心知识,成为半个无线专家。
19 4
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
62 11
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
43 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
12天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
11天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
11天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。