周涛:企业如何布局大数据?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 周涛,博士,教授,电子科技大学互联网科学中心主任。《大数据时代》翻译者。于2005年获中国科学技术大学学士学位,2010年获瑞士弗里堡大学物理系哲学博士学位,主要研究方向为复杂性科学、网络科学、信息物理、人类动力学和群集动力学。

周涛,博士,教授,电子科技大学互联网科学中心主任。《大数据时代》翻译者。于2005年获中国科学技术大学学士学位,2010年获瑞士弗里堡大学物理系哲学博士学位,主要研究方向为复杂性科学、网络科学、信息物理、人类动力学和群集动力学。

最近,电子科技大学教授,云基地大数据实验室合伙人周涛在接受采访时提出,对于普通企业要通过修炼成为大数据企业,关键要做好7个步骤:

第一步是要实现数据化。企业要为此做好计划,到底需要保存什么样的数据,以人为中心的数据还是以产品为中心,还是更关注企业运营,需要做好这样的计划,然后再将企业生产经营中的数据保存下来,即便是现在看来没什么用的数据,未来也可能产生巨大的价值。比如说像售楼处、体验店客户的来访数据,就有必要完整的记录下来。包括怎么过来的,一个人来还是几个人,有老人和小孩吗,穿什么样的衣服等等,还有客户的情绪,看了什么,问了什么问题,最后买了什么东西,都是非常重要的数据。另外,企业内部人力资源的各个方面也都可以记录下来,这些可以进行挖掘和分析的数据。他举例说,长虹公司在自己的生产线设置了很多传感器,监测温度、湿度、震动、噪音、颗粒等等因素,希望了解到生产过程中哪些因素会对员工产生明显影响。他们此前都认为温度和颗粒可能对于员工操作和产品质量影响最大,但是事实上最终数据分析的结果,温度是没有什么影响的,恒温的控制对于生产效率和合格率的贡献并不像想象中那么大,反而是噪音对于员工情绪以及生产的影响非常重要。要成为大数据企业,第一步企必须要实现数据化。

第二步,企业要建设自己的大数据管理与应用平台。对于很多企业,做大数据并不是意味着要自己去建设数据中心。随着云计算和云数据中心出现,使用外部数据中心的成本已经非常低了,数据存储的费用也是在成倍的下降。但是,企业要做大数据,必须要在IT基础设施方面具有比较好的数据处架构,要用大一些工具比如数据分布式存储、Hadoop等等。很关键的企业不仅要具备一个数据中心的硬件,还要考虑和企业业务方向结合,不仅就是包括了数据的采集、数据库架构,向上的分析模块,再往上的API数据出口,以及横向的一些业务模块和出口这些东西。要做成企业的大数据管理应用平台,我们强调一定要从企业的业务出发,量体裁衣,企业首先必须要搞清楚自己的业务形态是什么。

第三步,企业要自己培养一些大数据理念,或者是小数据挖掘的团队。做大数据,企业的规模不一样,要求也不一样。如果企业规模足够大,比如说是电信运营商或者电力、银行这样的行业,可能会形成一个大数据的团队。如果不是,比如说就是简单的服务企业,那么形成理念就可以了。现在我们认为比较好的数据科学家,也不是说就是特别擅长或适应网络,这样的人不重要了,重要的是要有武器,什么样的问题来了知道怎么解决。

关键我们认识是要培养四种理念:

(1)除了结构化数据以外还有文本、音频、图像、遥感、网络、行为轨迹、时间数据,这些数据怎么处理,它存在的大挑战是什么。

(2)一定要懂预测,因为绝大部分的大数据应用回到预测中,预测里面很多方法都是基准学习的,而基准学习目前最火的方向是集群学习。

(3)要走分布式存储计算,这绝对不是说我知道给Hadoop 、Mapreduce、Hbase就够了,关键问题是首先要知道怎么样去搭一个混合式的,你的数据来了,我到底是应该牺牲我的一致性还是牺牲操作性,大概的成本多少,哪些数据挖掘的重要算法我要把他Hadoop、Mapreduce实现,哪些算法要通过SPTA,可变逻辑治理是在硬件里面,从而替代CPU、GPU。

(4)需要整个数据向外的发展,知道哪些数据可能在外部产生什么样的重要价值,或者外部的数据能够在你的企业产生什么样的重要价值。企业应该培养出这四个能力,建立起企业数据挖掘的人才团队。

第四步,企业一定要做好自己的外部数据储备。我们都说“书到用时方恨少”,很多的企业,比如说像服装销售这样的传统行业,我要进的货在淘宝、天猫上卖的怎么样?在淘宝、天猫哪一个店铺怎么样?它的竞争品牌是什么样售价,怎么样销售的?对于这样一些数据,如果到需要的时候才去找,往往都来不及了。同样的道理。比如银行给中小企业发放贷款的时候,希望了解到它的用水、用电、生产、交通数据,例如通过摄像头就能知道这个企业到底有多少车运行,这些数据可能对于中小企业发放贷款决策都很重要。但是当你要发贷款的时候,再去问已经没有机会了,或者说成本太高了。我们建议,企业应该学会通过公共渠道或者数据交换的方法,根据自己的业务需求来量身定做自己的外部数据和战略数据。

第五步,大企业一定要有数据侦测的能力,需要有创新思维的人随时思考这些问题,比如企业占有的数据到底在外部能够产生什么样大的作用。就像我们经常拿雅昌艺术中心的例子,它存了很多艺术品的数据,所以最后它可以发布艺术指数。同样国家电网也发布两个指数,一个叫重工业用电指数,一个叫轻工业用电指数。淘宝网有它的CPI指数,还有很多企业的一些数据,实际上都可以发挥想象不到的价值。

第六步,一个大数据企业包括未来现代化企业,一定要有开放共享的态度。一方面需要企业把自己的很多问题社会化,另一方面企业要尽量去通过一些平等办法,通过数据交换的方式互相共享形成数据化。

第七步,企业还要做好数据方面的战略投资。我认为有三种比较先进的模式。

一种模式叫做产业链布局,比如说海尔、长虹可以投物联网,对物联网企业创新进行投入。比如说中信集团可以关注医疗,在这个方面寻找相关的数据应用。第二个方面就是技术,你要知道哪些是硬技术创新,特别是在基础术设施层面的,比如加速存储,云计算的一些技术,比如数据挖掘,垂直应用分析,这个方面集中了很多创新也可以形成很大的规模。第三种模式是数据集方面的投资,我们知道阿里巴巴投资高德是为了数据,它投资新浪微博不仅是要投钱还要花钱买数据,所有这一切本质还是想把数据流动起来做更大的事情。这种投资就是集成数据,强调数据流动性。这些投资里面有几点是需要注意的,一是要去关注企业的数据价值,其次要关注早期的投资,去长期指引而不是短期追逐回报率,最后还要多关注传统行业。

周涛教授提出,大数据的本质不在于数据量有多少,也不在于是否是异构的数据,而是在于数据是关联的,整体的数据可以流动起来。他认为,跨领域关联,通过一加一产生远大于二的价值才是大数据的精髓。


原文发布时间为:2013-12-13


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
SQL 存储 监控
大数据Flume企业开发实战
大数据Flume企业开发实战
128 0
|
1月前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
4月前
|
数据采集 人工智能 大数据
大数据+商业智能=精准决策,企业的秘密武器
大数据+商业智能=精准决策,企业的秘密武器
161 27
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
用大数据重塑客户关系管理:聪明企业的秘密武器
用大数据重塑客户关系管理:聪明企业的秘密武器
112 9
|
5月前
|
机器学习/深度学习 人工智能 算法
解锁政策红利:大数据时代的企业与个人发展新契机
在大数据与机器学习时代,政策解读、预测分析和个性化匹配成为挖掘发展新动能的重要工具。无论是企业还是个人,都能借助先进技术轻松理解复杂政策,把握趋势先机。文章探讨了自由职业者、创业者及企业员工如何通过政策支持实现协同发展,并介绍了“政策宝”这一智慧助手,助力用户发现和利用政策红利,抓住机遇实现目标。探索政策宝库,开启发展新征程!
|
10月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
536 2
|
存储 机器学习/深度学习 大数据
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
Apache Flink 诚邀您参加 7 月 27 日在杭州举办的阿里云开源大数据 Workshop,了解流式湖仓、湖仓一体架构的最近演进方向,共探企业云上湖仓实践案例。
259 12
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
|
11月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
188 0
|
存储 分布式计算 大数据
大数据革新在即,阿里云EMR如何布局DeltaLake引领行业潮流?
【8月更文挑战第26天】大数据时代,实时处理与分析能力对企业至关重要。Delta Lake 作为高性能、可靠且支持 ACID 事务的开源存储层,已成为业界焦点。阿里云 EMR 深度布局 Delta Lake,计划深化集成、强化数据安全、优化实时性能,并加强生态建设与社区贡献。通过与 Spark 的无缝对接及持续的技术创新,阿里云 EMR 致力于提供更高效、安全的数据湖解决方案,引领大数据处理领域的发展新方向。
168 3
|
存储 监控 数据挖掘
云上大数据分析平台:赋能企业决策,挖掘数据金矿
5.3 场景化 针对不同行业和领域的需求特点,云上大数据分析平台将推出更多场景化的解决方案。这些解决方案将结合行业特点和业务场景进行
602 7

热门文章

最新文章