为何多数的大数据项目以失败告终?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:  几乎每个人的心目中,大数据就是企业IT部门的大大小小的结构化和非结构化数据,而且其量正在成倍的增长。但是,尽管大数据已然成为了一种主流的IT现象,多数的大数据项目仍然以失败而告终。 究其原因,就在于企业很难找到适当的方法进行大数据的收集、管理和理解,并最终从大数据信息中提取出有价值的东西。

 几乎每个人的心目中,大数据就是企业IT部门的大大小小的结构化和非结构化数据,而且其量正在成倍的增长。但是,尽管大数据已然成为了一种主流的IT现象,多数的大数据项目仍然以失败而告终。

究其原因,就在于企业很难找到适当的方法进行大数据的收集、管理和理解,并最终从大数据信息中提取出有价值的东西。

征服大数据项目,并最终从中提取出您企业所需要的业务洞察力本身就是一项非常艰巨的任务。但当涉及到定义大数据项目的范畴,以及确保相关配套设施到位方面时,您企业的相关人员无法保持统一的步伐,那么,该项目注定是要失败的。

失败的原因分析

如下,是我所看到的大数据项目失败的主要原因:

缺乏一致性。在解决业务部门的相关问题方面,IT部门缺乏与业务部门的一致性。IT部门仅仅只是从技术的角度来看待问题。同样,缺乏企业利益相关者的真正的承诺也往往使得大数据项目很难成功。

缺乏数据访问权限。对数据的访问往往是受限制的,IT团队成员没有访问相关数据集的权限,以致他们无法找到能将使该项目成功的相关数据。

缺乏专业知识。鉴于许多在大数据领域的技术、方法和学科都是新的,导致企业的员工缺乏如何处理数据,完成业务的相关专业知识。

缺乏一致性

上述所有这些问题中,第一条,缺乏一致性。是您的企业必须首先解决的问题,而且也是最为重要的问题。问题的关键在于,您企业当前所探索和寻找的东西都是您不熟悉的领域,所以,要想获得大数据项目的成功,首先搞清楚您的业务部门到底是要解决什么问题是至关重要的。

虽然其是您企业大数据项目成功的最重要的因素,要想实现企业业务部门和IT部门之间的一致性也是相当具有挑战性的。不仅仅是因为大数据对于不同的人有着不同的意义,同时,还在于一系列外部因素可能会影响业务需求的变化,使得处理某些问题的优先级超出了IT部门所能保持的步伐。如果IT部门与业务部门在大数据项目所涉及的范畴方面无法达成一致,该项目就会涉及到太多的方向、太多的人,以至于会将重点从解决具体的业务问题变为对IT技术的管理,以便能够实现每个人的需求。

另外一个影响业务部门和IT部门之间的一致性的挑战来源于不愿意发生改变。很多时候,如果一个大数据项目建议采取相关的行动或变革,而业务部门的利益相关者不理解所涉及到的相关行动或变革,他们往往可能采取消极怠工的方法,首先默默的接受这一建议,但在之后将其贬为一个错误的进程,分析或数据集。对此,分析师团队则可能认为该业务部门已经同意并付诸相关行动了,只是他们所采取的行动所带来的结果只是产生了次优的业务成果。

缺乏数据访问权限

大数据项目失败的第二个原因——缺乏数据的访问权限可以追溯到一个基本的IT前提:筒仓。销售部门、营销部门、人力资源部门等都有数据仓库,每个部门的数据仓库都限制了相关数据的访问权限和保护措施。数据仓库存在的理由很好理解,但是如果IT部门所需要的数据仓库的某些相关数据不可用,那么,可以说在IT部门的员工试图解决某些问题前,就已然注定了他们无法解决这些问题了。

为了应对这一问题,大数据项目必须从一开始就具备相关数据的执行权。如果无法对所有业务相关数据进行访问,也就无法找出业务问题的关系和模式,也就无法解决业务部门所面临的问题了。所以,大数据项目的授权要来自企业的高层,如果企业高层发话说:“某个业务团队正在寻找解决某个相当重要的特定业务问题,IT部门就有足够的机会获得他们所需要的任何数据的访问权限了。”如果无法获得正确的数据信息,该项目无疑将长时间处于停滞状态。

缺乏专业知识

第三大缺陷——缺乏相关专业知识。这其实是源于企业缺乏合适的拥有正确的技能来执行大数据项目的人材。而由于大数据技术对于“主流”企业来说仍然是很新的,IT团队往往缺乏相关的专业知识来确定如何用大数据来达到分析的目的。

虽然招聘数据科学专家是解决这种专业知识的不足一种可能性的备选方案,但对于许多企业来说是不可行的。这一新的角色需要结合程序员的技能和调查研究科学家的思维,企业专门设置一个这样的职位的代价会非常高,同时其所需的相关技能设置也不常见,很难创建。

如何使您企业的大数据项目成功

考虑一个切实可行的办法。首先,不要将其称之为是一个“大数据项目”。将其命名为一个类似的项目名称:例如“一个帮助我们更好的了解我们的客户、以及为什么他们会喜欢在某个特定的商店购物的项目。”该项目是要回答重要的业务问题,而大数据便是答案的来源。如下,有一些最佳实践方案来帮助您的项目实现成功:

从列出一个您所想要解决的业务问题的清单入手

不要从解决某个大问题着手。从启动一个小的项目开始,选择一个您所亟待解决的具体的问题,并坚持下去。列出一份您所需要解答的问题的列表清单,并且不要因为被技术问题困住而忽视您的目标。确保IT团队的工作职责不会变得过于宽泛或所谓的“全方位”,这样可以尽量避免处理问题范围的改变进而导致的项目失败:即从业务部门到IT部门的需求的改变导致问题焦点的转移。确保所有利益相关方在客观上对于项目的实施和执行都是同意的,以便让每个人都能够专注于项目的完成。

在您开始项目之前获得企业高层的背书

一旦您已经确定您所要解决的业务问题,必须获得业务团队从上而下的对于您所需要的所有相关数据的支持,以保证成功完成项目。务必获得公司高层领导对于访问所有相关的业务数据的授权,以便您可以找到相关的模式和关系,进而解答业务问题。也就是说您必须获得访问、控制的权限。

确保您的团队具备执行项目所需的专业知识

理想的情况下,您的团队内部将会有成员接受过专业的训练,具备数据科学家的技能和心态,能够利用这些数据信息来生成所需的业务结果。如果不是的话,您可以利用您现有的系统来解决的问题。这是一个很好的退后一步来思考所需要解答的业务问题的时机。您可能在这时不需要经过专业的培训或NLP就能够得到您需要的答案,只是授予了合适的人员来访问企业内部的数据信息而已。

选择一个能够创造商业价值的问题,并在您已经正确的道路上持续的坚持下去。记住,一个成功的项目与其所涉及的范围是没有太大关系的。没必要一口气吃个胖子,那样反而会带来更大的失败。毕竟,一个小项目的成功要比一个大项目的失败要好得多。


原文发布时间为:2013-12-06


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
76 4
|
2月前
|
SQL 分布式计算 大数据
别再迷信“上大数据就能飞”了!大数据项目成败的5个真相
别再迷信“上大数据就能飞”了!大数据项目成败的5个真相
65 6
|
5月前
|
数据采集 分布式计算 数据可视化
大数据项目成功的秘诀——不只是技术,更是方法论!
大数据项目成功的秘诀——不只是技术,更是方法论!
144 8
大数据项目成功的秘诀——不只是技术,更是方法论!
|
数据采集 大数据
大数据实战项目之电商数仓(二)
大数据实战项目之电商数仓(二)
305 0
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
168 3
|
分布式计算 运维 DataWorks
MaxCompute操作报错合集之用户已在DataWorks项目中,并有项目的开发和运维权限,下载数据时遇到报错,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
193 8
|
弹性计算 分布式计算 大数据
MaxCompute产品使用合集之如何将用户A从项目空间A申请的表权限需要改为用户B
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
119 6
|
SQL 分布式计算 DataWorks
DataWorks产品使用合集之如何查询MaxCompute项目中的所有表及其字段信息
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
监控 Java 开发者
揭秘Struts 2性能监控:选对工具与方法,让你的应用跑得更快,赢在起跑线上!
【8月更文挑战第31天】在企业级应用开发中,性能监控对系统的稳定运行至关重要。针对流行的Java EE框架Struts 2,本文探讨了性能监控的工具与方法,包括商用的JProfiler、免费的VisualVM以及Struts 2自带的性能监控插件。通过示例代码展示了如何在实际项目中实施这些监控手段,帮助开发者发现和解决性能瓶颈,确保应用在高并发、高负载环境下稳定运行。选择合适的监控工具需综合考虑项目需求、成本、易用性和可扩展性等因素。
109 0
|
SQL 大数据 分布式数据库
SQL与大数据的神秘力量:如何用高效SQL处理海量数据,让你的项目一鸣惊人?
【8月更文挑战第31天】在现代软件开发中,处理海量数据是关键挑战之一。本文探讨了SQL与大数据结合的方法,包括数据类型优化、索引优化、分区优化及分布式数据库应用,并通过示例代码展示了如何实施这些策略。通过遵循最佳实践,如了解查询模式、使用性能工具及定期维护索引,开发者可以更高效地利用SQL处理大规模数据集。随着SQL技术的发展,其在软件开发中的作用将愈发重要。
443 0

热门文章

最新文章