盘点用户使用大数据的10个方法

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 我们正处于福雷斯特研究公司所描述的“用户时代”,这个时代中驱动业务决策的不再是公司,而是用户。基于这个原因,深度理解用户的重要性已经远胜以往,因此许多机构开始使用大数据技术来挖掘用户信息。 在这个时代,企图收获成功(甚至是求生存)的在线业务必须切实的理解顾客的体验和行为,因此海量数据的收集及挖掘能力成了这些机构的必备手段。

我们正处于福雷斯特研究公司所描述的“用户时代”,这个时代中驱动业务决策的不再是公司,而是用户。基于这个原因,深度理解用户的重要性已经远胜以往,因此许多机构开始使用大数据技术来挖掘用户信息。

在这个时代,企图收获成功(甚至是求生存)的在线业务必须切实的理解顾客的体验和行为,因此海量数据的收集及挖掘能力成了这些机构的必备手段。当下,有许多机构的分析仍处于数据的收集上,组织能力的缺乏和技术的限制让这些收集来的数据失去了应有的价值。而在用户体验上也缺乏按部就班的计划,从而丧失了获取关键见解的途径。因此,这样的数据分析有很大的误导、不完整及不确定性。

收集和分析正确的数据、切实的理解用户体验及用户行为已成为当务之急,下面将分享10个大数据的使用方法,可以帮助机构从用户交互中获得见解、提高用户忠诚度并从根本上取得竞争优势:

1.将网络传输中的数据看做“金矿”并进行挖掘。你的网络中包含了大量其它公司无法从中获益的数据,收割这些数据中的价值是你真正理解用户体验的第一步。

2.不要总是用假设去了解你的用户,并且知道他们需要什么。拥抱用户,并且切实的了解用户行为,要比去假设要好的多。保持客观,从实际数据中获得见解。

3.尽可能的收集数据,从而减少盲点。盲点可能导致丢失关键信息,从而得到一个歪曲的用户体验观。确认你收集了一切可以影响到用户体验和行为分析的数据。

4.对比数据的体积,我们该更看重数量。收集好数据之后,专注于重要的数据来做分析方案。

5.迅速。用户需求优先级总是在变化的,技术需要迅速的做出分析并做调整。这样才能保证你分析出的不是过时结果,对于随时都在改变的需求,你需要迅速的收集数据并做出响应的处理。

6.实时的业务运作。这就需求对数据的实时分析并获取见解,从而在情况发生后可以实时的做出调整,从而保证最佳的用户体验及经营结果。

7.分析不应该给产品系统带来风险,也就是分析永远都不应该给用户体验带来负面的影响。所以尽可能多的捕捉数据,避免盲点才能让分析出的见解不会对业务有负效应。

8.利用好你数据的每一个字节,聚合数据可能会暗藏关键见解。这些信息片段可能会反应最有价值的见解,可以帮助持续的提升用户体验及经营效果。

9.着眼大局。捕捉与你站点或者网络应用程序交互的所有数据,不管是来自智能手机、平板或者是电脑。丰富数据,将不同储存形式之间的数据关联起来,确信这些点都被连接了起来。在处理中关联的越早,获得的见解就越完整、精准、及时和有效。

10.和平台无关,确保你的大数据分析能力不会受到设备的类型限制(笔记本、台式机、智能手机、平板等)。


原文发布时间为:2013-12-05


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
机器学习/深度学习 分布式计算 DataWorks
MaxCompute产品使用合集之MaxCompute读取外部表的速度较慢,有什么方法来提升读取速度
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
机器学习/深度学习 人工智能 自然语言处理
大数据分析的技术和方法:从深度学习到机器学习
大数据时代的到来,让数据分析成为了企业和组织中不可或缺的一环。如何高效地处理庞大的数据集并且从中发现潜在的价值是每个数据分析师都需要掌握的技能。本文将介绍大数据分析的技术和方法,包括深度学习、机器学习、数据挖掘等方面的应用,以及如何通过这些技术和方法来解决实际问题。
512 2
|
机器学习/深度学习 数据采集 算法
大数据分析技术与方法探究
在当今信息化时代,数据量的增长速度远快于人类的处理能力。因此,如何高效地利用大数据,成为了企业和机构关注的焦点。本文将从大数据分析的技术和方法两个方面进行探究,为各行业提供更好的数据应用方向。
|
5月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
分布式计算 DataWorks 关系型数据库
MaxCompute产品使用合集之可以使用什么方法将MySQL的数据实时同步到MaxCompute
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
10月前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
量子计算作为革命性的计算范式,凭借量子比特和量子门的独特优势,展现出在大数据处理中的巨大潜力。本文探讨了量子计算的基本原理、在大数据处理中的应用及面临的挑战与前景,展望了其在金融、医疗和物流等领域的广泛应用。
|
11月前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
11月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
130 0
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
168 3
|
SQL 分布式计算 数据可视化
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
370 0

热门文章

最新文章