kubernetes Event 源码解析

简介: 众所周知,event在Kubernetes中起着举足轻重的作用,本文将为大家深入探讨一下Kubernetes中的事件机制。

51.png
镜像下载、域名解析、时间同步请点击 阿里巴巴开源镜像站

我们通过 kubectl describe [资源] 命令,可以在看到Event输出,并且经常依赖event进行问题定位,从event中可以分析整个POD的运行轨迹,为服务的客观测性提供数据来源,由此可见,event在Kubernetes中起着举足轻重的作用。
11.png
event并不只是kubelet中都有的,关于event的操作被封装在client-go/tools/record包,我们完全可以在写入自定义的event。
现在让我们来一步步揭开event的面纱。

一、Event定义

其实event也是一个资源对象,并且通过apiserver将event存储在etcd中,所以我们也可以通过 kubectl get event 命令查看对应的event对象。
以下是一个event的yaml文件:

apiVersion: v1
count: 1
eventTime: null
firstTimestamp: "2020-03-02T13:08:22Z"
involvedObject:
  apiVersion: v1
  kind: Pod
  name: example-foo-d75d8587c-xsf64
  namespace: default
  resourceVersion: "429837"
  uid: ce611c62-6c1a-4bd8-9029-136a1adf7de4
kind: Event
lastTimestamp: "2020-03-02T13:08:22Z"
message: Pod sandbox changed, it will be killed and re-created.
metadata:
  creationTimestamp: "2020-03-02T13:08:30Z"
  name: example-foo-d75d8587c-xsf64.15f87ea1df862b64
  namespace: default
  resourceVersion: "479466"
  selfLink: /api/v1/namespaces/default/events/example-foo-d75d8587c-xsf64.15f87ea1df862b64
  uid: 9fe6f72a-341d-4c49-960b-e185982d331a
reason: SandboxChanged
reportingComponent: ""
reportingInstance: ""
source:
  component: kubelet
  host: minikube
type: Normal

主要字段说明:

  • involvedObject: 触发event的资源类型
  • lastTimestamp:最后一次触发的时间
  • message:事件说明
  • metadata :event的元信息,name,namespace等
  • reason:event的原因
  • source:上报事件的来源,比如kubelet中的某个节点
  • type:事件类型,Normal或Warning

event字段定义可以看这里:types.go#L5078
接下来我们来看看,整个event是如何下入的。

二、写入事件

1、这里以kubelet为例,看看是如何进行事件写入的
2、文中代码以Kubernetes 1.17.3为例进行分析

先以一幅图来看下整个的处理流程
12.png
创建操作事件的客户端:
kubelet/app/server.go#L461

// makeEventRecorder sets up kubeDeps.Recorder if it's nil. It's a no-op otherwise.
func makeEventRecorder(kubeDeps *kubelet.Dependencies, nodeName types.NodeName) {
    if kubeDeps.Recorder != nil {
        return
    }
    //事件广播
    eventBroadcaster := record.NewBroadcaster()
    //创建EventRecorder
    kubeDeps.Recorder = eventBroadcaster.NewRecorder(legacyscheme.Scheme, v1.EventSource{Component: componentKubelet, Host: string(nodeName)})
    //发送event至log输出
    eventBroadcaster.StartLogging(klog.V(3).Infof)
    if kubeDeps.EventClient != nil {
        klog.V(4).Infof("Sending events to api server.")
        //发送event至apiserver
        eventBroadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: kubeDeps.EventClient.Events("")})
    } else {
        klog.Warning("No api server defined - no events will be sent to API server.")
    }
}

通过 makeEventRecorder 创建了 EventRecorder 实例,这是一个事件广播器,通过它提供了StartLogging和StartRecordingToSink两个事件处理函数,分别将event发送给log和apiserver。
NewRecorder创建了 EventRecorder 的实例,它提供了 EventEventf 等方法供事件记录。

EventBroadcaster

我们来看下EventBroadcaster接口定义:event.go#L113

// EventBroadcaster knows how to receive events and send them to any EventSink, watcher, or log.
type EventBroadcaster interface {
    //
    StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface
    StartRecordingToSink(sink EventSink) watch.Interface
    StartLogging(logf func(format string, args ...interface{})) watch.Interface
    NewRecorder(scheme *runtime.Scheme, source v1.EventSource) EventRecorder
    Shutdown()
}

具体实现是通过 eventBroadcasterImpl struct来实现了各个方法。
其中StartLogging 和 StartRecordingToSink 其实就是完成了对事件的消费,EventRecorder实现对事件的写入,中间通过channel实现了生产者消费者模型。

EventRecorder

我们先来看下EventRecorder 接口定义:event.go#L88,提供了一下4个方法

// EventRecorder knows how to record events on behalf of an EventSource.
type EventRecorder interface {
    // Event constructs an event from the given information and puts it in the queue for sending.
    // 'object' is the object this event is about. Event will make a reference-- or you may also
    // pass a reference to the object directly.
    // 'type' of this event, and can be one of Normal, Warning. New types could be added in future
    // 'reason' is the reason this event is generated. 'reason' should be short and unique; it
    // should be in UpperCamelCase format (starting with a capital letter). "reason" will be used
    // to automate handling of events, so imagine people writing switch statements to handle them.
    // You want to make that easy.
    // 'message' is intended to be human readable.
    //
    // The resulting event will be created in the same namespace as the reference object.
    Event(object runtime.Object, eventtype, reason, message string)
    // Eventf is just like Event, but with Sprintf for the message field.
    Eventf(object runtime.Object, eventtype, reason, messageFmt string, args ...interface{})
    // PastEventf is just like Eventf, but with an option to specify the event's 'timestamp' field.
    PastEventf(object runtime.Object, timestamp metav1.Time, eventtype, reason, messageFmt string, args ...interface{})
    // AnnotatedEventf is just like eventf, but with annotations attached
    AnnotatedEventf(object runtime.Object, annotations map[string]string, eventtype, reason, messageFmt string, args ...interface{})
}

主要参数说明:

  • object 对应event资源定义中的 involvedObject
  • eventtype 对应event资源定义中的type,可选Normal,Warning.
  • reason :事件原因
  • message :事件消息

我们来看下当我们调用 Event(object runtime.Object, eventtype, reason, message string) 的整个过程。
发现最终都调用到了 generateEvent 方法:event.go#L316

func (recorder *recorderImpl) generateEvent(object runtime.Object, annotations map[string]string, timestamp metav1.Time, eventtype, reason, message string) {
    .....
    event := recorder.makeEvent(ref, annotations, eventtype, reason, message)
    event.Source = recorder.source
    go func() {
        // NOTE: events should be a non-blocking operation
        defer utilruntime.HandleCrash()
        recorder.Action(watch.Added, event)
    }()
}

最终事件在一个 goroutine 中通过调用 recorder.Action 进入处理,这里保证了每次调用event方法都是非阻塞的。
其中 makeEvent 的作用主要是构造了一个event对象,事件name根据InvolvedObject中的name加上时间戳生成:

注意看:对于一些非namespace资源产生的event,event的namespace是default

func (recorder *recorderImpl) makeEvent(ref *v1.ObjectReference, annotations map[string]string, eventtype, reason, message string) *v1.Event {
    t := metav1.Time{Time: recorder.clock.Now()}
    namespace := ref.Namespace
    if namespace == "" {
        namespace = metav1.NamespaceDefault
    }
    return &v1.Event{
        ObjectMeta: metav1.ObjectMeta{
            Name:        fmt.Sprintf("%v.%x", ref.Name, t.UnixNano()),
            Namespace:   namespace,
            Annotations: annotations,
        },
        InvolvedObject: *ref,
        Reason:         reason,
        Message:        message,
        FirstTimestamp: t,
        LastTimestamp:  t,
        Count:          1,
        Type:           eventtype,
    }
}

进一步跟踪Action方法,apimachinery/blob/master/pkg/watch/mux.go#L188:23

// Action distributes the given event among all watchers.
func (m *Broadcaster) Action(action EventType, obj runtime.Object) {
    m.incoming <- Event{action, obj}
}

将event写入到了一个channel里面。
注意:
这个Action方式是apimachinery包中的方法,因为实现的sturt recorderImpl
*watch.Broadcaster 作为一个匿名struct,并且在 NewRecorder 进行 Broadcaster 赋值,这个Broadcaster其实就是 eventBroadcasterImpl 中的Broadcaster
到此,基本清楚了event最终被写入到了 Broadcaster 中的 incoming channel中,下面看下是怎么进行消费的。

三、消费事件

makeEventRecorder 调用的 StartLoggingStartRecordingToSink 其实就是完成了对事件的消费。

  • StartLogging直接将event输出到日志
  • StartRecordingToSink将事件写入到apiserver

两个方法内部都调用了 StartEventWatcher 方法,并且传入一个 eventHandler 方法对event进行处理

func (e *eventBroadcasterImpl) StartEventWatcher(eventHandler func(*v1.Event)) watch.Interface {
    watcher := e.Watch()
    go func() {
        defer utilruntime.HandleCrash()
        for watchEvent := range watcher.ResultChan() {
            event, ok := watchEvent.Object.(*v1.Event)
            if !ok {
                // This is all local, so there's no reason this should
                // ever happen.
                continue
            }
            eventHandler(event)
        }
    }()
    return watcher
}

其中 watcher.ResultChan 方法就拿到了事件,这里是在一个goroutine中通过func (m *Broadcaster) loop() ==>func (m *Broadcaster) distribute(event Event) 方法调用将event又写入了broadcasterWatcher.result
主要看下 StartRecordingToSink 提供的的eventHandlerrecordToSink 方法:

func recordToSink(sink EventSink, event *v1.Event, eventCorrelator *EventCorrelator, sleepDuration time.Duration) {
    // Make a copy before modification, because there could be multiple listeners.
    // Events are safe to copy like this.
    eventCopy := *event
    event = &eventCopy
    result, err := eventCorrelator.EventCorrelate(event)
    if err != nil {
        utilruntime.HandleError(err)
    }
    if result.Skip {
        return
    }
    tries := 0
    for {
        if recordEvent(sink, result.Event, result.Patch, result.Event.Count > 1, eventCorrelator) {
            break
        }
        tries++
        if tries >= maxTriesPerEvent {
            klog.Errorf("Unable to write event '%#v' (retry limit exceeded!)", event)
            break
        }
        // Randomize the first sleep so that various clients won't all be
        // synced up if the master goes down.
        // 第一次重试增加随机性,防止 apiserver 重启的时候所有的事件都在同一时间发送事件
        if tries == 1 {
            time.Sleep(time.Duration(float64(sleepDuration) * rand.Float64()))
        } else {
            time.Sleep(sleepDuration)
        }
    }
}

其中event被经过了一个 eventCorrelator.EventCorrelate(event) 方法做预处理,主要是聚合相同的事件(避免产生的事件过多,增加 etcd 和 apiserver 的压力,也会导致查看 pod 事件很不清晰)
下面一个for循环就是在进行重试,最大重试次数是12次,调用 recordEvent 方法才真正将event写入到了apiserver。

事件处理

我们来看下EventCorrelate方法:

// EventCorrelate filters, aggregates, counts, and de-duplicates all incoming events
func (c *EventCorrelator) EventCorrelate(newEvent *v1.Event) (*EventCorrelateResult, error) {
    if newEvent == nil {
        return nil, fmt.Errorf("event is nil")
    }
    aggregateEvent, ckey := c.aggregator.EventAggregate(newEvent)
    observedEvent, patch, err := c.logger.eventObserve(aggregateEvent, ckey)
    if c.filterFunc(observedEvent) {
        return &EventCorrelateResult{Skip: true}, nil
    }
    return &EventCorrelateResult{Event: observedEvent, Patch: patch}, err
}

分别调用了 aggregator.EventAggregate logger.eventObservefilterFunc 三个方法,分别作用是:

1、aggregator.EventAggregate:聚合event,如果在最近 10 分钟出现过 10 个相似的事件(除了 message 和时间戳之外其他关键字段都相同的事件),aggregator 会把它们的 message 设置为 (combined from similar events)+event.Message
2、logger.eventObserve:它会把相同的事件以及包含 aggregator 被聚合了的相似的事件,通过增加 Count 字段来记录事件发生了多少次。
3、filterFunc: 这里实现了一个基于令牌桶的限流算法,如果超过设定的速率则丢弃,保证了apiserver的安全。

我们主要来看下aggregator.EventAggregate方法:

func (e *EventAggregator) EventAggregate(newEvent *v1.Event) (*v1.Event, string) {
    now := metav1.NewTime(e.clock.Now())
    var record aggregateRecord
    // eventKey is the full cache key for this event
    //eventKey 是将除了时间戳外所有字段结合在一起
    eventKey := getEventKey(newEvent)
    // aggregateKey is for the aggregate event, if one is needed.
    //aggregateKey 是除了message和时间戳外的字段结合在一起,localKey 是message
    aggregateKey, localKey := e.keyFunc(newEvent)
    // Do we have a record of similar events in our cache?
    e.Lock()
    defer e.Unlock()
    //从cache中根据aggregateKey查询是否存在,如果是相同或者相类似的事件会被放入cache中
    value, found := e.cache.Get(aggregateKey)
    if found {
        record = value.(aggregateRecord)
    }
    //判断上次事件产生的时间是否超过10分钟,如何操作则重新生成一个localKeys集合(集合中存放message)
    maxInterval := time.Duration(e.maxIntervalInSeconds) * time.Second
    interval := now.Time.Sub(record.lastTimestamp.Time)
    if interval > maxInterval {
        record = aggregateRecord{localKeys: sets.NewString()}
    }
    // Write the new event into the aggregation record and put it on the cache
    //将locakKey也就是message放入集合中,如果message相同就是覆盖了
    record.localKeys.Insert(localKey)
    record.lastTimestamp = now
    e.cache.Add(aggregateKey, record)
    // If we are not yet over the threshold for unique events, don't correlate them
    //判断localKeys集合中存放的类似事件是否超过10个,
    if uint(record.localKeys.Len()) < e.maxEvents {
        return newEvent, eventKey
    }
    // do not grow our local key set any larger than max
    record.localKeys.PopAny()
    // create a new aggregate event, and return the aggregateKey as the cache key
    // (so that it can be overwritten.)
    eventCopy := &v1.Event{
        ObjectMeta: metav1.ObjectMeta{
            Name:      fmt.Sprintf("%v.%x", newEvent.InvolvedObject.Name, now.UnixNano()),
            Namespace: newEvent.Namespace,
        },
        Count:          1,
        FirstTimestamp: now,
        InvolvedObject: newEvent.InvolvedObject,
        LastTimestamp:  now,
        //这里会对message加个前缀:(combined from similar events):
        Message:        e.messageFunc(newEvent),
        Type:           newEvent.Type,
        Reason:         newEvent.Reason,
        Source:         newEvent.Source,
    }
    return eventCopy, aggregateKey
}

aggregator.EventAggregate方法中其实就是判断了通过cache和localKeys判断事件是否相似,如果最近 10 分钟出现过 10 个相似的事件就合并并加上前缀,后续通过logger.eventObserve方法进行count累加,如果message也相同,肯定就是直接count++。

四、总结

event处理的整个流程基本就是这样,我们可以概括为以下几点,也可以结合文中的图对比一起来看:

1、创建 EventRecorder 对象,通过其提供的 Event 等方法,创建好event对象
2、将创建出来的对象发送给 EventBroadcaster 中的channel中
3、EventBroadcaster 通过后台运行的goroutine,从管道中取出事件,并广播给提前注册好的handler处理
4、当输出log的handler收到事件就直接打印事件
5、当 EventSink handler收到处理事件就通过预处理之后将事件发送给apiserver
6、其中预处理包含三个动作,1、限流 2、聚合 3、计数
7、apiserver收到事件处理之后就存储在etcd中

回顾event的整个流程,可以看到event并不是保证100%事件写入(从预处理的过程来看),这样做是为了后端服务etcd的可用性,因为event事件在整个集群中产生是非常频繁的,尤其在服务不稳定的时候,而相比Deployment,Pod等其他资源,又没那么的重要。所以这里做了个取舍。

阿里巴巴开源镜像站 提供全面,高效和稳定的系统镜像、应用软件下载、域名解析和时间同步服务。”

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
652 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
187 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
8月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
1354 0
|
5月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
175 9
|
5月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
|
7月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
641 33

热门文章

最新文章

推荐镜像

更多