去伪存真——用数据分析手游渠道是否作弊

简介:   为什么这个渠道的数据很好,可就是不盈利呢?是我的产品有问题呢?或是渠道作弊?这还真是让人头疼。行业关于渠道作弊这块分享的信息真是太少了,各CP只能跌跌撞撞,靠自己摸着石头过河,那这回我们一起走进数据的世界,用数据说话,拨开迷雾辨真伪吧。

 

为什么这个渠道的数据很好,可就是不盈利呢?是我的产品有问题呢?或是渠道作弊?这还真是让人头疼。行业关于渠道作弊这块分享的信息真是太少了,各CP只能跌跌撞撞,靠自己摸着石头过河,那这回我们一起走进数据的世界,用数据说话,拨开迷雾辨真伪吧。

初级渠道作弊:同时看一次性用户指标/比例&平均单次使用时长指标

渠道的初级作弊,就是只拉新增用户,这种刷作弊的方式较容易发现,因为用户一次性用户指标较低,平均单次使用时长也远低于其它渠道均值,或是自身渠道其它的值。

笔者曾经遇到一个做手游的好友,他的产品投到新渠道后,新增用户连续3天暴涨500%,但是留存却不高,想咨询是什么地方有问题。于是我帮他查看了这个新渠道的两个指标:一次性用户指标&平均单次使用时长均低于其它渠道均值,基本上可以判断是渠道作弊了,再看新增用户的时间段,立马验证。正常用户都是在中午和晚上新增较多一个空闲的时间段,而这个增量正好相反,明显是一个上班的时间段(8:00-18:00)。

 如果你只投放了少量渠道,不能确定数据的时候,也可以对比TalkingData每月出的benchmark里的一次性用户比例&平均使用时长数据进行对比。

中级渠道作弊:看页面明细

一些手段稍微高一点的作弊,会将你应用中的SDK,打到别的热门应用中去,这样不但新增上去了,而且各项数据都还非常好看,没有破绽,但是就是盈利上不去。

这个时候就要需要关注页面明细了,查看页面明细是否是自家的,如果不是自家的页面,那这就很有可能存在作弊的问题。

高级渠道作弊:多数据维度比对

高级渠道作弊已经超出了一般人类可以想象的范畴,达到了智能级别,无论用户留存、机型、地域、联网等连手机号注册都可以作弊(笔者第一次知道的时候和小伙伴们都惊呆了。)以至笔者当时只能订了一个指标:LTV指标,如果这个指标达不到渠道平均水平,那么就放弃这个渠道,无论这个渠道是否作弊。但是后来随着对应用和渠道接触的越来越多,错杀了不少好渠道,觉得还是要多维度数据指标进行评判,TalkingData就有对这方面数据进行健康度评估。

如果要是游戏应用一般看用户玩家等级的比例就可以了,一般渠道是不会雇人去玩游戏升级的。

俗话说的好,道高一尺,魔高一丈,以上方法也不一定全面,如果还有别的分析渠道作弊的方法,大家多多分享出来。当然渠道作弊的情况还是比较少发生的,一般情况下如果应用数据不好,还是给从自己的应用中去找问题。

另附:

在实际推广中,App铺的渠道是非常多的,要从众多渠道中发现异常或者挑出不合适的渠道非常耗费人力,而且容易出错。所以这里分享一个游戏渠道数据打分模型,根据App设定当渠道高于X分的时候,要加大投放力度,当低于X分的时候,需要跟进该渠道,检查数据是否有异常或者是剔除不合适的渠道。这样可以节省不少人力,并提高排查准确率。这里引用一下游戏数据分析达人——石头曾介绍过“Z-score标准化”进行打分处理:

数据标准化“Z-score标准化”

μ为样本均值(Excel中函数Average),σ为样本标准差(Excel中函数STDEV)。
标准化多纬度数据:

标准化之后接着来就是要想办法把数据变成5分制(也就是1分、2分、3分、4分、5分),这里是将X的套用分数如下:

而后根据你目前游戏目标,给不同指标加上权重汇总后,可以得到相应指标(同样这里建议样本数据不能低于5个,不然会影响数据准确性)。这种方法前期需要根据实际情况调整权重,剔除异常值,稳定后,模型使用将会非常快捷、准确、省力、方便。


原文发布时间为:2013-09-21

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号


相关文章
|
数据挖掘 开发工具 黑灰产治理
|
数据挖掘
小白学数据分析----->基于数据驱动的最佳渠道评估策略
对于游戏数据分析来说,我们要从很多方面下手,具体从数据分析角度来说,作为游戏CP需要作三块工作,第一是游戏推广,第二是游戏质量,第三是游戏运营,就这三点来看,推广是未来游戏是否有稳定人气,获得稳定收入的关键一环。
1143 0
|
监控 数据挖掘 开发者
小白学数据分析----->渠道、运营、数据_I
学分析论坛|专注于游戏数据分析 针对本文的相关的讨论,请移步http://www.xuefenxi.com/forum.php?mod=viewthread&tid=112&extra= 上周六做了一个演讲,关于渠道、数据、运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下。
1087 0
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
702 4
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
205 2
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
265 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
10月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
|
11月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
110 3
|
10月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
383 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一

热门文章

最新文章