电信运营商该如何利用大数据?

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据市场前景广阔。市场研究公司MarketsandMarkets最新发布的一份报告预计,从2013年到2018年,全球大数据市场将会出现年均26%的增长率,即从今年的148.7亿美元增长到2018年的463.4亿美元。

大数据市场前景广阔。市场研究公司MarketsandMarkets最新发布的一份报告预计,从2013年到2018年,全球大数据市场将会出现年均26%的增长率,即从今年的148.7亿美元增长到2018年的463.4亿美元。

从网络数据到云计算,再到大数据,互联网时代真的变了。如今全球范围内的许多企业都在进军大数据应用市场,同时,大数据也为电信运营商带来了新的盈利空间以及新的挑战。

大数据“美好时代”来临

互联网产生大数据,随着互联网技术的不断发展,数据也将像能源、材料一样,成为战略性资源。如何利用数据资源深挖创新、提升效益,是诸多IT企业的追求目标。大数据因其市场需求广阔、后续增长潜力大、投资前景好等优点,后续发展持续被看好。

如今,“大数据”早已渗透到我们的生活中,衍生出了形形色色的数据应用,涵盖交通、医疗、金融、文艺、体育等各个方面。大数据促进了信息融合和产业跨界,也引发了更多新业态出现。其中,获利最多的当属IT企业。

在国内,腾讯这个移动互联网巨头是最早尝到大数据甜头的企业,其从2003年起已经开始努力做手机QQ的尝试。现在,几乎每个拥有手机的网民都是手机QQ用户。另一个互联网巨头百度的新一代搜索引擎的重要支柱之一就是大数据。依托大数据,百度新一代搜索引擎才得以为用户提供更便捷与智能的医疗、交通等服务。以医疗为例,用户可以在百度搜索引擎中便捷地获取相关病症的原因、症状、治疗等信息;甚至可以通过搜索引擎,在线咨询医生、在线挂号,这大大降低了百姓获得医疗信息和服务的门槛。除此之外,阿里巴巴的云计算、奇虎360的商业模式、微信的运作自如……这些IT大佬们的得意,无不与“大数据”这个词语紧密相连。

在国外,大数据也被许多科技企业看作是云计算之后的另一个巨大商机,包括微软、谷歌、亚马逊和微软在内的一大批互联网巨头纷纷掘金这一市场。谷歌基于搜索数据成功建立了盈利模式;亚马逊通过云技术、大数据构建了电商帝国……大数据引发的信息融合正在改变着IT企业的发展方式。

大数据时代运营商迎新机遇

在众多的IT企业中,乘着大数据的春风,运营商也迎来了新的发展机遇。现如今,互联网的发展已经深化到了移动互联网阶段,运营商在大数据领域具有先发优势。

运营商的用户数量巨大。运营商凭借多年积累下来的网络运营数据和用户业务数据,已经为其堆积了巨大的数据财富,这是移动互联网企业难以望其项背的。相对于互联网数据,运营商拥有的用户数据优势明显。首先,用户在办理固定电话和手机入网手续时需要提供实名信息,诸如年龄、性别、单位等;其次,运营商能够掌握用户的电信业务消费信息,诸如电信业务类型、业务资费、通话双方基本信息等;再次,运营商基于位置的电信服务可以精确获得用户的地理位置信息;最后,运营商拥有庞大的用户互联网访问量信息。基于这些信息,运营商完全可以通过深挖用户需求来创造新的商业价值。

可见,运营商利用大数据来经营市场是大势所趋。电信与媒体市场调研公司Informa Telecoms & Media前不久出示了一份调查结果指出,全球约有48%的运营商正在实施大数据业务。该调研公司表示,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。

因此,运营商如果能够通过技术创新,不断释放其管道中庞大数据的潜在力量,势必称霸移动互联网。不过,随着互联网企业不断地推出互联网公司端,运营商的优势也在慢慢减弱。运营商尽管已经占了先机,但面临的挑战也不小。

运营商应用互联网思维拥抱大数据

移动互联网时代讲求不断创新、不断革命。腾讯很聪明,手机QQ和微信左右手互动,得心应手。马云也很厉害,自己把自己拆了,搞了20多家的垂直小公司,业务搞得生龙活虎。沃尔玛的尿片与啤酒的案例更有创意——沃尔玛通过数据分析发现了一个有趣的现象:尿片与啤酒的销量总是成正比。于是该公司做了一次大胆尝试,当把两类商品摆在一起时,其销量会变得更大……

运营商要把客户吸引过去,需要持续地创新,用互联网的思维把用户大数据平台建设好。虽然目前运营商们都在谈“去电信化”,但与互联网巨头们相比,运营商仍缺乏互联网运营经验,对终端的掌控力度也不足,业务创新能力相对落后。业内人士认为,面对移动互联网带来的庞大的数据挑战,电信运营商的转型之路必须要围绕海量数据所带来的商机作深度挖掘和分析。

其实,运营商可以利用大数据分析用户的电信业务数据,深度挖掘用户需求,建立业务模式。比如,可借鉴互联网企业的关联推荐技术,运营商可向用户推荐电信关联业务,实现精细化营销。运营商可以利用基于云计算的大数据分析系统自动找到与该类商品相关联的其他商品并推荐给该用户。一方面给用户购买商品提供了便利,另一方面运营商也可从中增加广告收入。

大数据时代,带给用户更好的业务体验是掌握产业链话语权的关键,因此,只有在大数据分析的基础上进行商业模式创新和业务创新,运营商才能在激烈的竞争中立于不败之地。

本文读者评论摘录:

林文学:运营商可以利用大数据分析用户的电信业务数据,深度挖掘用户需求,建立业务模式。实际上运营商的个人信息数据泄露问题一直没有解决。大数据一来,运营商只不过拿到了更为高明的工具。

王志鹏:用户可能更关心运营商通过数据挖掘之后,究竟可以提供什么样的个性化服务。这个确实是挺重要的,试想如果你的手机话费预存用完了,运营商适时把各种优惠信息提供给你,用户是什么感受呢?适作的才是合理的,这是一个硬道理。


原文发布时间为:2013-09-18


本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
11月前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
185 0
|
机器学习/深度学习 数据可视化 大数据
【钉钉杯大学生大数据挑战赛】初赛 A:银行卡电信诈骗危险预测 Baseline
本文介绍了参加"钉钉杯大学生大数据挑战赛"初赛A的银行卡电信诈骗危险预测项目的Baseline方案,包括问题分析、Python实现(含数据探索、模型训练调参、特征工程、模型评价和可视化)、以及代码下载链接。
253 0
|
机器学习/深度学习 数据采集 算法
大数据分析案例-对电信客户流失分析预警预测
大数据分析案例-对电信客户流失分析预警预测
2014 0
大数据分析案例-对电信客户流失分析预警预测
|
存储 分布式计算 监控
运营商大数据精准截取点击网站、app、短信、座机通话等数据,高精准高意向。
【销售要求】:教育、房产、汽车、招商、婚庆、移民、留学、医疗等处于前期流量红利期,单个线索低于百度投放,转化率远高于竞价排名。短信营销、电话营销,需要合作企业有正规资质,金融业需要对应牌照,个人无法合作,仅限有营业执照的公司,运营商需备案!
运营商大数据精准截取点击网站、app、短信、座机通话等数据,高精准高意向。
|
存储 大数据
大数据开发项目-电信项目1-生产数据
通信运营商每时每刻会产生大量的通信数据,例如通话记录,短信记录,彩信记录,第三方服务资费等等繁多信息。数据量如此巨大,除了要满足用户的实时查询和展示之外,还需要定时定期的对已有数据进行离线的分析处理。例如,当日话单,月度话单,季度话单,年度话单,通话详情,通话记录等等+。我们以此为背景,寻找一个切入点
296 0
大数据开发项目-电信项目1-生产数据
|
消息中间件 数据采集 分布式计算
大数据开发项目-电信项目2-传输数据
1. 配置flume文件 2.数据采集部分打通 2.1启动zookeeper及集群 2.2启动kafka集群 2.3启动flume集群 2.4生产数据 3 数据消费环境准备 3.1添加maven配置 3.2添加maven配置 4 消费数据工具类 4.1 PropertiesUtil代码来调用配置的参数
|
供应链 安全 大数据
大数据在疫情期间对货运运营商的安全至关重要
大数据在许多方面都至关重要,在疫情期间,大数据已对货运运营商的安全产生了重大影响。
大数据在疫情期间对货运运营商的安全至关重要
|
存储 分布式计算 Oracle
Hbase迎接电信TB级大数据洗礼之热点网站功能实践
在今年年初的时候联通王志军院长就Hadoop在电信行业的大数据应用谈了自己的经验,随着3G网络的发展中国联通目前运营着世界上最大的CDMA网络,流量运营是中国联通一个重要特点。中国联通3G套餐当中流量占比非常非常大,中国联通3G用户流量使用情况也是非常可观的。那么在3G网络功能中上网冲浪占了很大的比例,去研究用户感兴趣的热点网站成为了行为分析中很有特点的一项功能,联通就可以根据这些网站信息推出增值服务,古人云:大浪淘沙始到金啊!
300 0
|
2月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
76 4
|
2月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
167 3

热门文章

最新文章