案例解析|游戏发行商如何低成本实现精细化营销

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
全局流量管理 GTM,标准版 1个月
简介: 行业趋势—游戏行业市场营销往精细化发展   2020年初突发的疫情防控导致游戏行业的用户数量大幅增长,个别产品的服务器更是被玩家挤爆,对应二级市场上游戏公司股价也开始一路走高。  然而回望两年前,受政策影响整个游戏行业受到重挫,2018年游戏娱乐板块全年整体下跌36.66%,游戏行业几乎一整年都在饥寒交迫中挣扎。

行业趋势—游戏行业市场营销往精细化发展

  2020年初突发的疫情防控导致游戏行业的用户数量大幅增长,个别产品的服务器更是被玩家挤爆,对应二级市场上游戏公司股价也开始一路走高。
  然而回望两年前,受政策影响整个游戏行业受到重挫,2018年游戏娱乐板块全年整体下跌36.66%,游戏行业几乎一整年都在饥寒交迫中挣扎。直到2018年12月,游戏版号恢复审批,游戏行业才开始逐步复苏。再加上5G的推出,有望解决云游戏及AR/VR的技术瓶颈,游戏行业的发展迎来春天的趋势已经势不可挡。
  而此次的疫情防控,对于游戏行业的发展,就好比发令枪已响。整个行业经历了整体下跌,再逐步复苏的过程,不少游戏公司都面临着推广成本高、获客难、流量成本高等问题,然而发令枪一响,有些游戏公司已经提前布局,提前进入了快车道。游戏用户越来越成熟,对于游戏品质的要求也越来越高。游戏领域的竞争愈演愈烈,游戏好玩的同时也需要做好市场运营才能获得更好的业绩。随着流量成本不断升高,游戏行业的市场营销开始往精细化发展。
  企业A是一家独特且创新的游戏公司,目前在全球已有超过1亿的手机游戏用户。代表作手游曾成为一款国民级手游,同时在全球大获成功。近些年来,企业A继续深耕研发有足够创新度和游戏性的手机游戏,致力于发展游戏发行业务,为全球的玩家带来更具可玩性的游戏,为各大研发商提供向全世界发布游戏的优质平台,在中国手游发行商中位列前茅。

迅猛增长的数据量和分析需求对自建系统的扩展性、易用性、实时性都带来了挑战

  游戏领域的竞争非常激烈,业务上要求游戏运营平台能够做到精细化运营,效果实时反馈,抢先一步预测。企业A的广告大数据分析部门为了解决实时分析问题,以Hadoop体系为生态核心来构建搭建了自己的大数据体系。但是随着数据量的迅猛增长以及业务对于数据分析的要求的提高,这套大数据分析系统的问题逐渐暴露出来:
- 扩展性问题
  数据量增长曲线高,IDC扩容难度大。
- 易用性问题
  自行维护的Hadoop+Hive+Presto体系,学习与维护成本过高。
- 实时性问题
  业务越来越高的实时性要求,Presto作为直接查询的实时计算引擎,性能不达预期,数据分析的实时性不够,即便是预计算处理后放在高性能数据库里再输出也捉襟见肘。
- 性价比问题
  为了确保性能与稳定,自建集群随着IDC规模的扩大,企业成本会大幅上升。

如何低成本的应对业务量增长带来的各类挑战

  针对上述业务挑战和架构遇到的痛点,企业A大数据团队开始尝试针对架构和产品选型进行考察,先后尝试了多款开源分布式分析引擎以及大数据产品,但是在实时性,关联性查询等方面的业务要求无法满足。最终企业A大数据团队尝试POC使用了阿里云的AnalyticDB for MySQL产品。分析型数据库AnalyticDB是阿里巴巴自主研发的海量数据实时高并发在线分析云计算服务,可以在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索。在感受到 ADB的快、灵活、易用、规模扩展和高并发的优点特性后,企业A的大数据团队和阿里云数据库团队一起成功地打造了围绕阿里云AnalyticDB为核心的新一代游戏广告实时运营分析平台。
TB1c8ekwNz1gK0jSZSgXXavwpXa-864-572.png

图1 基于Hadoop的大数据架构示意图


TB1by9pwG61gK0jSZFlXXXDKFXa-864-520.png

图2 基于AnalyticDB(ADB)的数据分析架构示意图


  整个方案是将归因后的数据经过logstash后存入AnalyticDB存储密集型,再预处理后放入AnalyticDB计算密集型,供前端分析使用,用来替代原来的Hadoop+Hive+Presto体系。基于阿里云AnalyticDB的新实平台有很多优势:
- 查询速度快
  比OLTP快10倍以上,比presto也能快数倍,QPS数百到上万。
- 弹性伸缩
  节点和配置都可以随时升降,随着数据增长灵活升级。
- 易用
  Pesto迁移过来,几乎没有任何改动成本,MySQL迁移大部分语句兼容。
- 海量规模
  动态线性扩容至数千节点,可支撑海量级别数据及分析。

客户价值:10倍性能提升,75%成本节约

  企业A通过采用“POLARDB + ADB大存储+ ADB高性能”产品组合打造出新一代游戏买量市场实时数据运营分析平台,云原生数据处理、分析闭环,实现了高效的游戏数据运营。
  分析数据的实时性提升帮助用户更好地挖掘数据蕴含的价值,通过对数据的分析更好地指导业务开展。在构建好新一代平台后,分析性能产生了5-10倍的性能提升,极大的提升了业务体验,促进了买量市场的投放效率转化;
  基于玩家行为日志表日益增长,日增长过亿数据量,通过ADB存储密集型实例进行存储和分析,有效地降低的客户的总体使用成本,总成本下降高达75%;
  5-10倍的性能提升、300%成本节约、超高性价比助力新一代游戏发行实时数据运营迈上新台阶。

案例涉及到的产品

目录
相关文章
|
存储 Kubernetes 前端开发
阿里云函数计算助力高德 RTA 广告投放系统架构升级
阿里云函数计算助力高德RTA广告投放系统架构升级
阿里云函数计算助力高德 RTA 广告投放系统架构升级
|
专有云 云计算
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.1 基础资源满足潮汐性分析
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.1 基础资源满足潮汐性分析
422 0
|
弹性计算 运维 Kubernetes
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.2 某客户基础资源弹性方案
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.2 某客户基础资源弹性方案
367 0
|
监控 网络协议 UED
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.1 社交平台可靠性——4.1.1行业质量监控指标
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.1 社交平台可靠性——4.1.1行业质量监控指标
350 0
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(2)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(2)
327 0
|
负载均衡
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(8)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(8)
112 0
|
存储 弹性计算 运维
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(6)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(6)
127 0
|
存储 弹性计算 运维
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(4)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(4)
153 0
|
弹性计算 监控 Kubernetes
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(9)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(9)
129 0
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(1)
《云上社交行业技术服务白皮书》——第四章 云上社交保障与服务案例——4.2 社交流量潮汐性——4.2.3 云上成本优化(1)
384 0
下一篇
无影云桌面