PostgreSQL 并行计算解说 之16 - parallel index only scan

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 标签 PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持 背景 PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。 parallel seq scan

标签

PostgreSQL , cpu 并行 , smp 并行 , 并行计算 , gpu 并行 , 并行过程支持


背景

PostgreSQL 11 优化器已经支持了非常多场合的并行。简单估计,已支持27余种场景的并行计算。

parallel seq scan                                  
                                  
parallel index scan                                  
                                  
parallel index only scan                                  
                                  
parallel bitmap scan                                  
                                  
parallel filter                                  
                              
parallel hash agg                              
                              
parallel group agg                              
                                  
parallel cte                                  
                                  
parallel subquery                                  
                                  
parallel create table                                  
                                  
parallel create index                                  
                                  
parallel select into                                  
                                  
parallel CREATE MATERIALIZED VIEW                                  
                                  
parallel 排序 : gather merge                                   
                                  
parallel nestloop join                                  
                                  
parallel hash join                                  
                                  
parallel merge join                                  
                                  
parallel 自定义并行聚合                                  
                                  
parallel 自定义并行UDF                                  
                                  
parallel append                                  
                                  
parallel union                                  
                                  
parallel fdw table scan                                  
                                  
parallel partition join                                  
                                  
parallel partition agg                                  
                                  
parallel gather                          
                  
parallel gather merge                  
                                  
parallel rc 并行                                  
                                  
parallel rr 并行                                  
                                  
parallel GPU 并行                                  
                                  
parallel unlogged table                                   

接下来进行一一介绍。

关键知识请先自行了解:

1、优化器自动并行度算法 CBO

《PostgreSQL 9.6 并行计算 优化器算法浅析》

《PostgreSQL 11 并行计算算法,参数,强制并行度设置》

parallel index only scan

并行索引only扫描

数据量:10亿。

create unlogged table table5 (i int, c1 int);        
insert into table5 select i, random()*100 from generate_series(1,1000000000) t(i);        
vacuum analyze table5;        
set max_parallel_maintenance_workers=32;        
create index idx_table5_1 on table5(c1);        
alter table table5 set (parallel_workers =64);        
场景 数据量 关闭并行 开启并行 并行度 开启并行性能提升倍数
parallel index only scan 10 亿 8 秒 0.6 秒 20 13.33 倍

1、关闭并行,耗时: 8 秒。

postgres=# explain select count(c1) from table5 where c1<10;   
                                            QUERY PLAN                                               
---------------------------------------------------------------------------------------------------  
 Aggregate  (cost=2095539.13..2095539.14 rows=1 width=8)  
   ->  Index Only Scan using idx_table5_1 on table5  (cost=0.57..1867922.45 rows=91046673 width=4)  
         Index Cond: (c1 < 10)  
(3 rows)  
  
postgres=# select count(c1) from table5 where c1<10;   
  count     
----------  
 95015214  
(1 row)  
  
Time: 8052.776 ms (00:08.053)  

2、开启并行,耗时: 0.6 秒。

postgres=# explain select count(c1) from table5 where c1<10;   
                                                      QUERY PLAN                                                         
-----------------------------------------------------------------------------------------------------------------------  
 Finalize Aggregate  (cost=1014359.95..1014359.96 rows=1 width=8)  
   ->  Gather  (cost=1014359.89..1014359.90 rows=20 width=8)  
         Workers Planned: 20  
         ->  Partial Aggregate  (cost=1014359.89..1014359.90 rows=1 width=8)  
               ->  Parallel Index Only Scan using idx_table5_1 on table5  (cost=0.57..1002979.06 rows=4552334 width=4)  
                     Index Cond: (c1 < 10)  
(6 rows)  
    
postgres=# select count(c1) from table5 where c1<10;   
  count     
----------  
 95015214  
(1 row)  
  
Time: 605.800 ms  

其他知识

1、优化器自动并行度算法 CBO

《PostgreSQL 9.6 并行计算 优化器算法浅析》

《PostgreSQL 11 并行计算算法,参数,强制并行度设置》

2、function, op 识别是否支持parallel

postgres=# select proparallel,proname from pg_proc;                                  
 proparallel |                   proname                                                      
-------------+----------------------------------------------                                  
 s           | boolin                                  
 s           | boolout                                  
 s           | byteain                                  
 s           | byteaout                                  

3、subquery mapreduce unlogged table

对于一些情况,如果期望简化优化器对非常非常复杂的SQL并行优化的负担,可以自己将SQL拆成几段,中间结果使用unlogged table保存,类似mapreduce的思想。unlogged table同样支持parallel 计算。

4、vacuum,垃圾回收并行。

5、dblink 异步调用并行

《PostgreSQL VOPS 向量计算 + DBLINK异步并行 - 单实例 10亿 聚合计算跑进2秒》

《PostgreSQL 相似搜索分布式架构设计与实践 - dblink异步调用与多机并行(远程 游标+记录 UDF实例)》

《PostgreSQL dblink异步调用实现 并行hash分片JOIN - 含数据交、并、差 提速案例 - 含dblink VS pg 11 parallel hash join VS pg 11 智能分区JOIN》

暂时不允许并行的场景(将来PG会继续扩大支持范围):

1、修改行,锁行,除了create table as , select into, create mview这几个可以使用并行。

2、query 会被中断时,例如cursor , loop in PL/SQL ,因为涉及到中间处理,所以不建议开启并行。

3、paralle unsafe udf ,这种UDF不会并行

4、嵌套并行(udf (内部query并行)),外部调用这个UDF的SQL不会并行。(主要是防止large parallel workers )

5、SSI 隔离级别

参考

https://www.postgresql.org/docs/11/parallel-plans.html

《PostgreSQL 11 并行计算算法,参数,强制并行度设置》

《PostgreSQL 11 preview - 并行计算 增强 汇总》

《PostgreSQL 10 自定义并行计算聚合函数的原理与实践 - (含array_agg合并多个数组为单个一元数组的例子)》

《PostgreSQL 9.6 并行计算 优化器算法浅析》

 

免费领取阿里云RDS PostgreSQL实例、ECS虚拟机

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
SQL 存储 Oracle
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
3863 0
|
存储 SQL 网络协议
PolarDB for PostgreSQL 采用iprange和SPGiST index 实现超光速 - 全球化业务根据来源IP智能DNS路由就近分配本地机房访问, 提升用户体验
[《如何获得IP地址对应的地理信息库, 实现智能DNS解析? 就近路由提升全球化部署业务的访问性能》](../202211/20221124_09.md) 上一篇信息提到了如何获取IP地址段的地理信息库, 本篇信息将使用PolarDB for PostgreSQL来加速根据来源IP快速找到对应的IP地址段, 将用到PolarDB for PostgreSQL的SPGiST索引和inet数据类型. 相比于把IP地址段存储为2个int8字段作between and的匹配, SPGiST索引和inet数据类型至少可以提升20倍性能.
249 0
|
SQL 存储 弹性计算
PostgreSQL 分页, offset, 返回顺序, 扫描方法原理(seqscan, index scan, index only scan, bitmap scan, parallel xx scan),游标
标签 PostgreSQL , 数据离散性 , 扫描性能 , 重复扫 , bitmap index scan , 排序扫描 , 扫描方法 , 顺序 背景 一个这样的问题: 为什么select x from tbl offset x limit x; 两次查询连续的OFFSET,会有重复数据呢? select ctid,* from tbl where ... offset 0 li
2130 0
|
存储 传感器 关系型数据库
【重新发现PostgreSQL之美】- 8 轨迹业务IO杀手克星index include(覆盖索引)
大家好 ,这里是重新发现PostgreSQL之美 - 8 轨迹业务IO杀手克星index include(覆盖索引)
|
传感器 SQL 并行计算
【重新发现PostgreSQL之美】 - 6 index链表跳跳糖 (CTE recursive 递归的详细用例)
大家好,这里是重新发现PostgreSQL之美 - 6 index链表跳跳糖 (CTE recursive 递归的详细用例)
|
存储 关系型数据库 Go
PostgreSQL 11 内核优化 - 降低vacuum cleanup阶段index scan概率 ( vacuum_cleanup_index_scale_factor , skip index vacuum cleanup stage)
PostgreSQL 11 内核优化 - 降低vacuum cleanup阶段index scan概率 ( vacuum_cleanup_index_scale_factor , skip index vacuum cleanup stage)
1273 0
|
11天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3
|
11天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
41 3
|
11天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
54 2
|
25天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
174 15