达摩院医疗AI在26家医院上岗,已诊断3万个疑似肺炎病例

简介: 达摩院医疗AI已在湖北、上海、广东、江苏等16个省市的26家医院上岗,截至目前,达摩院AI已对3万个临床疑似新冠肺炎病例CT影像进行了诊断,单个病例影像分析可在20秒内完成,准确率达到96%。据介绍,该技术将很快在全国100多家新冠肺炎定点医院完成部署应用。

2月21日,记者获悉,达摩院医疗AI已在湖北、上海、广东、江苏等16个省市的26家医院上岗,截至目前,达摩院AI已对3万个临床疑似新冠肺炎病例CT影像进行了诊断,单个病例影像分析可在20秒内完成,准确率达到96%。据介绍,该技术将很快在全国100多家新冠肺炎定点医院完成部署应用。

疫情早期,由于确诊案例样本量少,医疗机构缺少高质量临床诊断数据,核酸检测作为病原学证据被公认为新冠肺炎诊断的主要参考标准。随着临床诊断数据的积累,新冠肺炎的影像学大数据特征逐渐清晰,CT影像结果变得愈发重要。根据国家卫健委公布的诊疗方案第五版,CT影像临床诊断结果可作为新冠肺炎病例判断的标准之一。

但在临床诊断过程中,医生人肉辨别CT影像效率较低,据了解,一位新冠肺炎病人的CT影像大概在300张左右,每诊断一个病例,影像医生的耗时大约为5-15分钟。

image.jpeg

为了提升新冠肺炎的临床诊断效率,达摩院基于5000多个病例的CT影像样本数据,学习训练样本的病灶纹理,研发了全新的AI算法模型,可在20秒内快速完成新冠肺炎影像的分析,分析结果准确率达96%,大幅提升诊断效率。AI还能并直接算出病灶部位的占比比例,进而量化病症的轻重程度。

据报道,该技术2月15日率先在郑州小汤山——郑州岐伯山医院投入使用,目前已在湖北、上海、广东、江苏、安徽等16个省市的26家医院落地,包括武汉市第六医院、上海市大华医院及江苏无锡虹桥医院,已有3万个临床疑似新冠肺炎病例通过达摩院医疗AI完成CT影像的诊断。

达摩院算法专家徐敏丰表示,“AI已经成为临床医生提升诊断效率的重要手段,尤其在细微区别的CT影像分析上远远高于医生肉眼的效率,可以预见未来AI还将在更多的疾病诊断中会发挥价值。”

据悉,达摩院正与合作伙伴卫宁健康加快技术推广。该技术将很快在全国100多家新冠肺炎定点医院完成部署应用。

相关文章
|
1天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
84 59
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
2天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
12 2
|
3天前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
8 0
|
5天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗诊断中的应用
【10月更文挑战第23天】随着人工智能技术的不断发展,AI在医疗领域的应用也日益广泛。本文将介绍AI在医疗诊断中的一些应用,包括医学影像分析、病理诊断、基因数据分析等。通过这些应用,我们可以更好地理解AI技术在医疗诊断中的价值和潜力。
|
3天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
32 8
|
2天前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
基于开源框架Spring AI Alibaba快速构建Java应用
|
1天前
|
人工智能 运维 NoSQL
云栖大会|多模+一体化,构建更高效的AI应用
在2024年云栖大会「NoSQL数据库」专场,多位知名企业和阿里云瑶池数据库团队的技术专家,共同分享了阿里云Lindorm、Tair、MongoDB和MyBase的最新进展与实践。Tair推出Serverless KV服务,解决性能瓶颈和运维难题;Lindorm助力AI和具身智能时代的多模数据处理;MongoDB云原生化提升开发效率;MyBase One打破云边界,提供云边端一体化服务。这些技术进展和最佳实践,展示了阿里云在NoSQL数据库领域的创新能力和广泛应用前景。
|
1天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
16 2