手把手教你实现二叉树数据添加 | 带你学《Java语言高级特性》之三十九

简介: 二叉树可以优化查找效率的关键原因在于其特殊的数据保存方式,在保存时就借助比较器提前完成数据的有序摆放。本节将结合具体案例讲解实现二叉树数据保存的方法。

上一篇:初识二叉树,领悟树的概念 | 带你学《Java语言高级特性》之三十八

二叉树可以优化查找效率的关键原因在于其特殊的数据保存方式,在保存时就借助比较器提前完成数据的有序摆放。本节将结合具体案例讲解实现二叉树数据保存的方法。

【本节目标】
通过阅读本节内容,你将了解到二叉树保存数据的方式,并能够复习之前所学的比较器相关内容,借助比较器实现二叉树特殊的数据保存功能。

在实现二叉树的处理之中最为关键的问题在于数据的保存,而且数据由于牵扯到对象比较的问题,那么一定要有比较器的支持,而这个比较器首选一定是Comparable,所以本次将保存一个Person 类数据:

class Person implements Comparable<Person>{
    private String name;
    private int age;
    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }
    @Override
    public String toString() {
        return "【Person类对象】姓名:" + this.name + "、年龄:" + this.age + "\n";
    }

    @Override
    public int compareTo(Person per) {
        return this.age-per.age;//升序
    }
}

随后如果要想进行数据的保存,首先一定要有一个节点类。节点类中由于牵扯到数据保存问题,所以必须使用Comparable(可以区分大小);

import java.util.Arrays;
public class JavaAPIDemo {
    public static void main(String[] args) throws Exception{
        BinaryTree<Person> tree=new BinaryTree<Person>();
        tree.add(new Person("小强-80",80));
        tree.add(new Person("小强-30",30));
        tree.add(new Person("小强-50",50));
        tree.add(new Person("小强-60",60));
        tree.add(new Person("小强-90",90));
        System.out.println(Arrays.toString(tree.toArray()));
    }
}
/**
 * 实现二叉树操作
 * @param <T> 要进行二叉树的实现
 */
class BinaryTree<T extends Comparable<T>>{
    private class Node{
        private Comparable<T> data;  //存放Comparable,可以比较大小
        private Node parent;   //保存父节点
        private Node left;   //保存左子树
        private Node right;  //保存右子树
        public Node(Comparable<T> data){    //构造方法直接负责进行数据的存储
            this.data=data;
        }
        /**
         * 实现节点数据的适当位置的存储
         * @param newNode 创建的新节点
         * @throws IllegalArgumentException 保存的数据已存在
         */
        public void addNode(Node newNode) {
            if(newNode.data.compareTo((T)this.data) <= 0){   //比当前节点数据小
                if(this.left==null){   //没有左子树
                    //当前没有左子树
                    this.left=newNode;   //保存左子树
                    newNode.parent=this;   //保存父节点
                }else{   //需要向左边继续判断
                    this.left.addNode(newNode);    //继续向下判断
                }
            }else{     //比根节点的数据大
                if(this.right==null){    //当前没有右子树
                    this.right=newNode;    //保存左子树
                    newNode.parent=this;   //保存父节点
                }else{
                    this.right.addNode(newNode);  //继续向下判断
                }
            }
        }
        /**
         * 实现所有数据的获取处理,按照中序遍历的形式来完成
         */
        public void toArrayNode() {
            if(this.left!=null){     //有左子树
                this.left.toArrayNode();    //递归调用
            }
            BinaryTree.this.returnData[BinaryTree.this.foot++]=this.data;
            if(this.right!=null){
                this.right.toArrayNode();
            }
        }
    }
    //-------------------以下为二叉树的功能实现--------------
    private Node root;  //保存根节点
    private int count;   //保存数据个数
    private Object[] returnData;   //返回的数据
    private int foot=0;   //脚标控制
    /**
     * 进行数据的保存
     * @param data 要保存的数据内容
     * @exception NullPointerException 保存数据为空时抛出的异常
     */
    public void add(Comparable<T> data){
        if(data==null){
            throw new NullPointerException("保存的数据不允许为空!");
        }
        //所有的数据本身不具备节点关系的匹配,那么一定要将其包装在Node类之中
        Node newNode=new Node(data);   //保存节点
        if(this.root==null){    //现在没有根节点,则第一个节点作为根节点
            this.root=newNode;
        }else{    //需要为其保存到一个合适的节点
            this.root.addNode(newNode);  //交由node类负责处理
        }
        this.count++;
    }
    /**
     * 以对象数组的形式返回全部数据,如果没有数据返回null
     * @return 全部数据
     */
    public Object[] toArray(){
        if(this.count==0){
            return null;
        }
        this.returnData=new Object[this.count];//保存长度为数组长度
        this.foot=0;    //脚标清零
        this.root.toArrayNode();   //直接通过Node类负责
        return this.returnData;   //返回全部的数据
    }
}
class Person implements Comparable<Person>{
    private String name;
    private int age;
    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }
    @Override
    public String toString() {
        return "【Person类对象】姓名:" + this.name + "、年龄:" + this.age +"\n";
    }

    @Override
    public int compareTo(Person person) {
        return this.age-person.age;//升序
    }
}

执行结果:
[【Person类对象】姓名:小强-30、年龄:30
, 【Person类对象】姓名:小强-50、年龄:50
, 【Person类对象】姓名:小强-60、年龄:60
, 【Person类对象】姓名:小强-80、年龄:80
, 【Person类对象】姓名:小强-90、年龄:90
]
在进行数据添加的时候只是实现了节点关系的保存,而这种关系的保存后的结果就是所有的数据都属于有序排列。

想学习更多的Java的课程吗?从小白到大神,从入门到精通,更多精彩不容错过!免费为您提供更多的学习资源。
本内容视频来源于阿里云大学

下一篇:浅谈二叉树节点删除之道 | 带你学《Java语言高级特性》之四十
更多Java面向对象编程文章查看此处

相关文章
|
26天前
|
Java API 开发工具
【Azure Developer】Java代码实现获取Azure 资源的指标数据却报错 "invalid time interval input"
在使用 Java 调用虚拟机 API 获取指标数据时,因本地时区设置非 UTC,导致时间格式解析错误。解决方法是在代码中手动指定时区为 UTC,使用 `ZoneOffset.ofHours(0)` 并结合 `withOffsetSameInstant` 方法进行时区转换,从而避免因时区差异引发的时间格式问题。
131 3
|
1月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
88 16
|
2月前
|
数据采集 JSON Java
Java爬虫获取1688店铺所有商品接口数据实战指南
本文介绍如何使用Java爬虫技术高效获取1688店铺商品信息,涵盖环境搭建、API调用、签名生成及数据抓取全流程,并附完整代码示例,助力市场分析与选品决策。
|
2月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
3月前
|
JSON JavaScript 前端开发
Python+JAVA+PHP语言,苏宁商品详情API
调用苏宁商品详情API,可通过HTTP/HTTPS发送请求并解析响应数据,支持多种编程语言,如JavaScript、Java、PHP、C#、Ruby等。核心步骤包括构造请求URL、发送GET/POST请求及解析JSON/XML响应。不同语言示例展示了如何获取商品名称与价格等信息,实际使用时请参考苏宁开放平台最新文档以确保兼容性。
|
3月前
|
监控 Java API
Java语言按文件创建日期排序及获取最新文件的技术
这段代码实现了文件创建时间的读取、文件列表的获取与排序以及获取最新文件的需求。它具备良好的效率和可读性,对于绝大多数处理文件属性相关的需求来说足够健壮。在实际应用中,根据具体情况,可能还需要进一步处理如访问权限不足、文件系统不支持某些属性等边界情况。
204 14
|
4月前
|
Java 编译器 应用服务中间件
为什么说 Java 语言编译与解释并存的原因
在编程语言的世界里,Java以其独特的“编译与解释并存”特性独树一帜。这一特性不仅赋予了Java强大的跨平台能力,还使其在性能和灵活性上达到了很好的平衡。接下来,我们将深入探讨Java语言这一特性的本质、原理以及在实际应用中的体现。
96 6
|
4月前
|
分布式计算 Java 大数据
Java 语言基础概念与常识之主要特点解析
Java是一种广泛应用于企业级开发、移动应用(如Android)、大数据处理及云计算等领域的编程语言。其核心特点包括跨平台性(一次编写,到处运行)、面向对象设计、自动垃圾回收、多线程支持和高性能表现。Java通过JVM实现跨平台,具备强大的健壮性和安全性,同时拥有丰富的标准库与活跃的开发者社区。本文深入解析Java的技术优势及其在电商系统、大数据处理和云计算中的实际应用,并提供相关面试资料供学习参考。
127 0
时间轮-Java实现篇
在前面的文章《[时间轮-理论篇](https://developer.aliyun.com/article/910513)》讲了时间轮的一些理论知识,然后根据理论知识。我们自己来实现一个简单的时间轮。
|
20天前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案