[python爬虫]scrapy+django+mysql爬大众点评餐厅数据

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: scrapy爬大众点评餐厅信息。利用scrapy的css选择器和xpath选择器解析网页,利用django的orm保存数据到mysql,项目github地址:https://github.com/jjzhu-ncu/Jpider

环境

  • python 3.6(推荐使用anaconda)
  • django 1.11(pip install django)
  • scrapy 1.3.3 (pip install scrapy)
  • mysql 5.7.17
  • mac os 10.11.6
  • chrome 57.0.2987.133 (64-bit)

概述

利用scrapy的css选择器和xpath选择器解析网页,利用django的orm保存数据到mysql,项目github地址:https://github.com/zhujiajunup/Jpider

点评爬虫

先创建django项目和scrapy项目
项目结构如下所示:
_2017_04_26_12_04_21

_2017_04_26_12_04_59
在django app spiders包下的models.py 创建shop信息对应的model

class ShopInfo(models.Model):
    shop_id = models.CharField(max_length=20, primary_key=True)
    shop_name = models.CharField(max_length=200, default='')
    review_count = models.CharField(max_length=20, default='')
    avg_price = models.CharField(max_length=20, default='')
    taste = models.CharField(max_length=10, default='')
    env = models.CharField(max_length=10, default='')
    service = models.CharField(max_length=10, default='')
    address = models.CharField(max_length=200, default='')
    open_time = models.CharField(max_length=200, default='')
    rank_star = models.CharField(max_length=20, default='')
    place = models.CharField(max_length=20, default='')
    classify = models.CharField(max_length=20, default='')
    star_all = models.CharField(max_length=20, default='')
    star_5 = models.CharField(max_length=20, default='')
    star_4 = models.CharField(max_length=20, default='')
    star_3 = models.CharField(max_length=20, default='')
    star_2 = models.CharField(max_length=20, default='')
    star_1 = models.CharField(max_length=20, default='')
    feature = models.BooleanField(default=False)
    feature2 = models.CharField(max_length=200, default='')

在Jpider包下的setting.py配置mysql数据库相关信息


DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql',
        # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
        'NAME': 'spider',
        'USER': 'root',
        'HOST': '127.0.0.1',
        'PASSWORD': '1234',
        'PORT': 3306,
        'OPTIONS': {'charset':'utf8mb4'},
    }
}

执行如下命令初始化mysql数据库表

python manage.py makemigrations
python manage.py migrate

如果要使用django的orm来与mysql交互,需要在爬虫项目的items.py里配置一下,需要scrapy_djangoitem包,通过如下命令安装

pip install scrapy_djangoitem

并定义item

import scrapy
from spiders.models import ShopInfo, ReviewDedail, ShopId
from scrapy_djangoitem import DjangoItem

class DazongdianpingItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    pass

class ShopInfoItem(DjangoItem):
    django_model = ShopInfo

class ReviewDetailItem(DjangoItem):
    django_model = ReviewDedail

class ShopIdItem(DjangoItem):
    django_model = ShopId

还需要注意的是,在不启动django项目的时候要使用django的模块,需要手动启动,在scrapy的init.py里加入如下代码:

import sys
import os
import django

sys.path.append('../../../Jpider') # 具体路径
os.environ['DJANGO_SETTINGS_MODULE'] = 'Jpider.settings'
django.setup()

写爬虫之前,需要了解一下要爬的网站的url组成规则,打开chrom的调试模式(option+command+i),由于朋友需要美食类下的餐厅信息,

self.start_urls = [
            'http://www.dianping.com/search/category/2/10/g110', # 北京火锅
            'http://www.dianping.com/search/category/2/10/g107', # 北京台湾菜
            'http://www.dianping.com/search/category/2/10/g112', # 北京小吃快餐
            'http://www.dianping.com/search/category/2/10/g250', # 北京创意菜
            'http://www.dianping.com/search/category/2/10/g116', # 北京西餐
            'http://www.dianping.com/search/category/2/10/g113', # 北京日本菜
            'http://www.dianping.com/search/category/2/10/g103', # 北京粤菜
            'http://www.dianping.com/search/category/2/10/g115', # 北京东南亚菜
            'http://www.dianping.com/search/category/2/10/g102', # 北京川菜
            'http://www.dianping.com/search/category/1/10/g113', # 上海日本菜???
            'http://www.dianping.com/search/category/1/10/g110', # 上海火锅
            'http://www.dianping.com/search/category/1/10/g107', # 上海台湾菜
            'http://www.dianping.com/search/category/1/10/g103', # 上海粤菜
            'http://www.dianping.com/search/category/1/10/g102', # 上海川菜
            'http://www.dianping.com/search/category/1/10/g112', # 上海小吃快餐
            'http://www.dianping.com/search/category/1/10/g115', # 上海东南亚菜

            'http://www.dianping.com/search/category/1/10/g116',  # 上海西餐

        ]

那就上海火锅http://www.dianping.com/search/category/1/10/g110 为例
_2017_04_26_10_46_51
在调试模式下,可以发现,当前页的餐厅信息是在\

的li标签下,而餐厅的url包含在a标签的href下
_2017_04_26_10_48_23
一个
所以就可以先取出li标签,再取出a下的href,处理函数如下:
   def parse_pg(self, response):
        print(response.url)
        shops = response.css('div.content div.shop-list li')
        for s in shops:
            shop_id_item = ShopIdItem()
            short_url = s.css('div.tit a::attr(href)').extract()[0].strip()
            shop_url = self.root_url+short_url
            shop_id = short_url.split('/')[2]

            shop_id_item['shop_id'] = shop_id

            shop_id_item.save()

            self.count += 1
            yield scrapy.Request(shop_url, callback=self.parse_detail)
        self.logger.error('total count %d' % self.count)

当然需要处理分页问题
_2017_04_26_10_55_04
同理,通过scrapy的css+xpath很容易定位

    def parse(self, response):
        yield scrapy.Request(response.url, callback=self.parse_pg)
        pages = int(response.css('div.page a::text').extract()[-2])
        for pg in range(1, pages+1):
            print(response.url + 'p' + str(pg))
            yield scrapy.Request(response.url + 'p' + str(pg), callback=self.parse_pg)

现在就可以提取餐厅的具体信息了

    def parse_detail(self, response):
        print(response.url)

        shop_id = response.url[response.url.rindex('/')+1:]


        basic_info = response.css('div.basic-info')

        closed_class = basic_info.css('p.shop-closed').extract()

        if closed_class != []:  # 未营业
            shop_info = ShopInfoItem()
            shop_info['shop_id'] = shop_id
            shop_name = basic_info.css('h1.shop-name::text').extract()[0].strip()
            shop_info['shop_name'] = shop_name
            shop_info.save()
            self.logger.error('%s 未营业' % response.url)
            return None
        try:
            rank_star = basic_info.css('div.brief-info span.mid-rank-stars::attr(title)').extract()[0].strip()
            shop_name = basic_info.css('h1.shop-name::text').extract()[0].strip()
            review_count = basic_info.css('div.brief-info').xpath('./span/text()').extract()[0].strip()
            avg_price = basic_info.css('div.brief-info').xpath('./span[@id="avgPriceTitle"]/text()').extract()[0].strip()
            comment_score = basic_info.css('div.brief-info').xpath('./span[@id="comment_score"]').css('span.item::text').extract()
            address = basic_info.css('div.address').xpath('./span[@itemprop="street-address"]/text()').extract()[0].strip()
            info_indent = basic_info.css('div.other p.info')

            print(basic_info.css('div.promosearch-wrapper').extract())
            tuan = basic_info.css('div.promosearch-wrapper p.expand-info').css('span.info-name::text').extract()

            print('-'*10+str(tuan)+'-'*10)

            breadcrumb = response.css('div.breadcrumb')
            bars = breadcrumb.css('a::text').extract()
            if len(bars) >= 3:

                place = bars[1].strip()
                classify = bars[2].strip()
            else:
                place = ''
                classify = ''


            open_time = ''
            for ind in info_indent:
                # print(ind.css('span.info-name::text').extract())
                if ind.css('span.info-name::text').extract()[0].strip().startswith('营业时间'):
                    open_time = ind.css('span.item::text').extract()[0].strip()
                    break

            # print(shop_id+'\t'+shop_name+'\t'+review_count+'\t'+avg_price+'\t'+str(comment_score)+'\t'+str(address)+'\t'+open_time)
            shop_info = ShopInfoItem()
            shop_info['shop_id'] = shop_id
            shop_info['shop_name'] = shop_name
            shop_info['review_count'] = review_count
            shop_info['avg_price'] = avg_price
            shop_info['address'] = address
            shop_info['open_time'] = open_time
            shop_info['taste'] = comment_score[0]
            shop_info['env'] = comment_score[1]
            shop_info['service'] = comment_score[2]
            shop_info['rank_star'] = rank_star
            shop_info['place'] = place
            shop_info['classify'] = classify
            shop_file = open(self.save_dir + 'shop/' + str(shop_id) + '.html', 'w')
            shop_file.write(response.body.decode('utf-8'))
            shop_info.save()
            yield scrapy.Request(response.url+'/review_more_newest', callback=self.parse_review)
        except Exception:
            self.logger.error(response.url+' exception')
            self.logger.error(traceback.format_exc())

启动scrapy

scrapy crawl dazongdianping

查看数据
_2017_04_26_12_44_46

导出数据到excel


import sys
import os
import django
import django.db.models
sys.path.append('../Jpider')
os.environ['DJANGO_SETTINGS_MODULE'] = 'Jpider.settings'
django.setup()

from spiders.models import ShopInfo, ReviewDedail, ShopId

import xlwt
category_dict = {'g110':'火锅', 'g107':'台湾菜', 'g112':'小吃快餐', 'g250': '创意菜',
                 'g116': '西餐', 'g113': '日本菜', 'g103': '粤菜', 'g115': '东南亚菜', 'g102': '川菜'}

rank_star_dict = {
    '五星商户': 5,
    '准五星商户':4.5,
    '四星商户': 4,
    '准四星商户': 3.5,
    '三星商户': 3,
    '准三星商户': 2.5,
    '二星商户': 2,
    '准二星商户': 1.5,
    '一星商户': 1,
    '准一星商户': 0.5,
    '该商户暂无星级': 0,
    '': '无'
}


workbook = xlwt.Workbook()
sheet = workbook.add_sheet('dazongdianping',cell_overwrite_ok=True)
title = ['餐厅id','城市', '餐厅名称', '餐厅地点', '餐厅地址', '餐厅类别', '人均价格', '是否参加营销活动', '营业时间', '点评数量',
         '总体评分', '口味评分', '环境评分', '服务评分', '五星', '四星', '三星', '二星', '一星', '第一条评论时间']
for i in range(len(title)):
    sheet.write(0, i, title[i] )

shops = ShopInfo.objects.all()

result_dic = {}

for j in range(1, len(shops)+1):
    shop = shops[j-1]
    info_list = []
    info_list.append(str(shop.shop_id)) # id
    print(shop.shop_id)
    try:
        url = ShopId.objects.get(pk=shop.shop_id).from_url
    except ShopId.DoesNotExist:
        continue
    if url is None:
        continue
    city_no = url.split('/')[-3]
    city = '北京' if city_no == '2' else '上海'
    info_list.append(city)
    category = category_dict[url.split('/')[-1][:4]]
    info_list.append(shop.shop_name)
    info_list.append(shop.place if shop.place is not None else '')
    info_list.append(shop.address if shop.address is not None else '')
    info_list.append(category)
    avg_price = shop.avg_price.split(':')[1]
    if len(avg_price) != 1:
        avg_price = avg_price[:-1]

    info_list.append(avg_price )
    features = shop.feature2.split(';')
    print(features)
    f_l = []
    for f in features:
        if f == 'huo':
            print('活动')
            f_l.append('活动')
        elif f == 'ka':
            print('会员卡')
            f_l.append('会员卡')
        else:
            f_l.append(f)
    info_list.append(';'.join(f_l))
    f_l.clear()
    info_list.append(shop.open_time.replace('\t', ' ').replace('\r','').replace('\n', ';') if shop.open_time is not None else '')
    info_list.append(shop.review_count[:-3])
    info_list.append(rank_star_dict[shop.rank_star])
    info_list.append(shop.taste.split(':')[1])
    info_list.append(shop.env.split(':')[1])
    info_list.append(shop.service.split(':')[1])

    review = ReviewDedail.objects.get(pk=shop.shop_id)
    info_list.append(review.star_5)
    info_list.append(review.star_4)
    info_list.append(review.star_3)
    info_list.append(review.star_2)
    info_list.append(review.star_1)
    info_list.append(review.first_review_time)
    for i in range(len(info_list)):
        if info_list[i] is None:
            info_list[i] = ' '
    li = result_dic.get(city+'_'+category, [])
    li.append(info_list.copy())
    result_dic[city+'_'+category] = li
    info_list.clear()

book = xlwt.Workbook()
for city_cate, infos in result_dic.items():
    sheet = book.add_sheet(city_cate)
    for i in range(len(title)):
        sheet.write(0, i, title[i])
    for i in range(1, len(infos)):
        for j in range(len(infos[i])):
            sheet.write(i, j, infos[i][j])
book.save('./all-data.xls')
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
157 0
|
6月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
2月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
161 10
|
5月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
324 67
|
3月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
|
4月前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
119 1
|
4月前
|
数据采集 Web App开发 JavaScript
Python爬虫解析动态网页:从渲染到数据提取
Python爬虫解析动态网页:从渲染到数据提取
|
5月前
|
数据采集 存储 监控
Scrapy框架下地图爬虫的进度监控与优化策略
Scrapy框架下地图爬虫的进度监控与优化策略
|
6月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
284 28

推荐镜像

更多