系列文章:Kubernetes日志采集最佳实践

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
文件存储 NAS,50GB 3个月
简介: 在Kubernetes中,日志采集和普通虚拟机的方式有很大不同,相对实现难度和部署代价也略大,但若使用恰当则比传统方式自动化程度更高、运维代价更低。本期将为大家介绍如何正确的进行Kubernetes的日志采集。

前言

上一期主要介绍Kubernetes日志输出的一些注意事项,日志输出最终的目的还是做统一的采集和分析。在Kubernetes中,日志采集和普通虚拟机的方式有很大不同,相对实现难度和部署代价也略大,但若使用恰当则比传统方式自动化程度更高、运维代价更低。

Kubernetes日志采集难点

在Kubernetes中,日志采集相比传统虚拟机、物理机方式要复杂很多,最根本的原因是Kubernetes把底层异常屏蔽,提供更加细粒度的资源调度,向上提供稳定、动态的环境。因此日志采集面对的是更加丰富、动态的环境,需要考虑的点也更加的多。

例如:

  1. 对于运行时间很短的Job类应用,从启动到停止只有几秒的时间,如何保证日志采集的实时性能够跟上而且数据不丢?
  2. K8s一般推荐使用大规格节点,每个节点可以运行10-100+的容器,如何在资源消耗尽可能低的情况下采集100+的容器?
  3. 在K8s中,应用都以yaml的方式部署,而日志采集还是以手工的配置文件形式为主,如何能够让日志采集以K8s的方式进行部署?
Kubernetes 传统方式
日志种类 文件、stdout、宿主机文件、journal 文件、journal
日志源 业务容器、系统组件、宿主机 业务、宿主机
采集方式 Agent(Sidecar、DaemonSet)、直写(DockerEngine、业务) Agent、直写
单机应用数 10-100 1-10
应用动态性
节点动态性
采集部署方式 手动、Yaml 手动、自定义

采集方式:主动 or 被动

日志的采集方式分为被动采集和主动推送两种,在K8s中,被动采集一般分为Sidecar和DaemonSet两种方式,主动推送有DockerEngine推送和业务直写两种方式。

  • DockerEngine本身具有LogDriver功能,可通过配置不同的LogDriver将容器的stdout通过DockerEngine写入到远端存储,以此达到日志采集的目的。这种方式的可定制化、灵活性、资源隔离性都很低,一般不建议在生产环境中使用。
  • 业务直写是在应用中集成日志采集的SDK,通过SDK直接将日志发送到服务端。这种方式省去了落盘采集的逻辑,也不需要额外部署Agent,对于系统的资源消耗最低,但由于业务和日志SDK强绑定,整体灵活性很低,一般只有日志量极大的场景中使用。
  • DaemonSet方式在每个node节点上只运行一个日志agent,采集这个节点上所有的日志。DaemonSet相对资源占用要小很多,但扩展性、租户隔离性受限,比较适用于功能单一或业务不是很多的集群。
  • Sidecar方式为每个POD单独部署日志agent,这个agent只负责一个业务应用的日志采集。Sidecar相对资源占用较多,但灵活性以及多租户隔离性较强,建议大型的K8S集群或作为PAAS平台为多个业务方服务的集群使用该方式。

image.png

总结下来:DockerEngine直写一般不推荐;业务直写推荐在日志量极大的场景中使用;DaemonSet一般在中小型集群中使用;Sidecar推荐在超大型的集群中使用。详细的各种采集方式对比如下:

DockerEngine 业务直写 DaemonSet方式 Sidecar方式
采集日志类型 标准输出 业务日志 标准输出+部分文件 文件
部署运维 低,原生支持 低,只需维护好配置文件即可 一般,需维护DaemonSet 较高,每个需要采集日志的POD都需要部署sidecar容器
日志分类存储 无法实现 业务独立配置 一般,可通过容器/路径等映射 每个POD可单独配置,灵活性高
多租户隔离 弱,日志直写会和业务逻辑竞争资源 一般,只能通过配置间隔离 强,通过容器进行隔离,可单独分配资源
支持集群规模 本地存储无限制,若使用syslog、fluentd会有单点限制 无限制 取决于配置数 无限制
资源占用 低,docker
engine提供 整体最低,省去采集开销 较低,每个节点运行一个容器 较高,每个POD运行一个容器
查询便捷性 低,只能grep原始日志 高,可根据业务特点进行定制 较高,可进行自定义的查询、统计 高,可根据业务特点进行定制
可定制性 高,可自由扩展 高,每个POD单独配置
耦合度 高,与DockerEngine强绑定,修改需要重启DockerEngine 高,采集模块修改/升级需要重新发布业务 低,Agent可独立升级 一般,默认采集Agent升级对应Sidecar业务也会重启(有一些扩展包可以支持Sidecar热升级)
适用场景 测试、POC等非生产场景 对性能要求极高的场景 日志分类明确、功能较单一的集群 大型、混合型、PAAS型集群


日志输出:Stdout or 文件

和虚拟机/物理机不同,K8s的容器提供标准输出和文件两种方式。在容器中,标准输出将日志直接输出到stdout或stderr,而DockerEngine接管stdout和stderr文件描述符,将日志接收后按照DockerEngine配置的LogDriver规则进行处理;日志打印到文件的方式和虚拟机/物理机基本类似,只是日志可以使用不同的存储方式,例如默认存储、EmptyDir、HostVolume、NFS等。

虽然使用Stdout打印日志是Docker官方推荐的方式,但大家需要注意这个推荐是基于容器只作为简单应用的场景,实际的业务场景中我们还是建议大家尽可能使用文件的方式,主要的原因有以下几点:

  1. Stdout性能问题,从应用输出stdout到服务端,中间会经过好几个流程(例如普遍使用的JSON LogDriver):应用stdout -> DockerEngine -> LogDriver -> 序列化成JSON -> 保存到文件 -> Agent采集文件 -> 解析JSON -> 上传服务端。整个流程相比文件的额外开销要多很多,在压测时,每秒10万行日志输出就会额外占用DockerEngine 1个CPU核。
  2. Stdout不支持分类,即所有的输出都混在一个流中,无法像文件一样分类输出,通常一个应用中有AccessLog、ErrorLog、InterfaceLog(调用外部接口的日志)、TraceLog等,而这些日志的格式、用途不一,如果混在同一个流中将很难采集和分析。
  3. Stdout只支持容器的主程序输出,如果是daemon/fork方式运行的程序将无法使用stdout。
  4. 文件的Dump方式支持各种策略,例如同步/异步写入、缓存大小、文件轮转策略、压缩策略、清除策略等,相对更加灵活。

因此我们建议线上应用使用文件的方式输出日志,Stdout只在功能单一的应用或一些K8s系统/运维组件中使用。

CICD集成:Logging Operator

image.png
Kubernetes提供了标准化的业务部署方式,可以通过yaml(K8s API)来声明路由规则、暴露服务、挂载存储、运行业务、定义缩扩容规则等,所以Kubernetes很容易和CICD系统集成。而日志采集也是运维监控过程中的重要部分,业务上线后的所有日志都要进行实时的收集。

原始的方式是在发布之后手动去部署日志采集的逻辑,这种方式需要手工干预,违背CICD自动化的宗旨;为了实现自动化,有人开始基于日志采集的API/SDK包装一个自动部署的服务,在发布后通过CICD的webhook触发调用,但这种方式的开发代价很高。

在Kubernetes中,日志最标准的集成方式是以一个新资源注册到Kubernetes系统中,以Operator(CRD)的方式来进行管理和维护。在这种方式下,CICD系统不需要额外的开发,只需在部署到Kubernetes系统时附加上日志相关的配置即可实现。

Kubernetes日志采集方案

image.png
早在Kubernetes出现之前,我们就开始为容器环境开发日志采集方案,随着K8s的逐渐稳定,我们开始将很多业务迁移到K8s平台上,因此也基于之前的基础专门开发了一套K8s上的日志采集方案。主要具备的功能有:

  1. 支持各类数据的实时采集,包括容器文件、容器Stdout、宿主机文件、Journal、Event等;
  2. 支持多种采集部署方式,包括DaemonSet、Sidecar、DockerEngine LogDriver等;
  3. 支持对日志数据进行富化,包括附加Namespace、Pod、Container、Image、Node等信息;
  4. 稳定、高可靠,基于阿里自研的Logtail采集Agent实现,目前全网已有几百万的部署实例;
  5. 基于CRD进行扩展,可使用Kubernetes部署发布的方式来部署日志采集规则,与CICD完美集成。

安装日志采集组件

目前这套采集方案已经对外开放,我们提供了一个Helm安装包,其中包括Logtail的DaemonSet、AliyunlogConfig的CRD声明以及CRD Controller,安装之后就能直接使用DaemonSet采集以及CRD配置了。安装方式如下:

  1. 阿里云Kubernetes集群在开通的时候可以勾选安装,这样在集群创建的时候会自动安装上述组件。如果开通的时候没有安装,则可以手动安装
  2. 如果是自建的Kubernetes,无论是在阿里云上自建还是在其他云或者是线下,也可以使用这样采集方案,具体安装方式参考[自建Kubernetes安装]()。

安装好上述组件之后,Logtail和对应的Controller就会运行在集群中,但默认这些组件并不会采集任何日志,需要配置日志采集规则来采集指定Pod的各类日志。

采集规则配置:环境变量 or CRD

除了在日志服务控制台上手动配置之外,对于Kubernetes还额外支持两种配置方式:环境变量和CRD。

环境变量是自swarm时代一直使用的配置方式,只需要在想要采集的容器环境变量上声明需要采集的数据地址即可,Logtail会自动将这些数据采集到服务端。这种方式部署简单,学习成本低,很容易上手;但能够支持的配置规则很少,很多高级配置(例如解析方式、过滤方式、黑白名单等)都不支持,而且这种声明的方式不支持修改/删除,每次修改其实都是创建1个新的采集配置,历史的采集配置需要手动清理,否则会造成资源浪费。
image.png
CRD配置方式是非常符合Kubernetes官方推荐的标准扩展方式,让采集配置以K8s资源的方式进行管理,通过向Kubernetes部署AliyunLogConfig这个特殊的CRD资源来声明需要采集的数据。例如下面的示例就是部署一个容器标准输出的采集,其中定义需要Stdout和Stderr都采集,并且排除环境变量中包含COLLEXT_STDOUT_FLAG:false的容器。
基于CRD的配置方式以Kubernetes标准扩展资源的方式进行管理,支持配置的增删改查完整语义,而且支持各种高级配置,是我们极其推荐的采集配置方式。
image.png

采集规则推荐的配置方式

image.png

实际应用场景中,一般都是使用DaemonSet或DaemonSet与Sidecar混用方式,DaemonSet的优势是资源利用率高,但有一个问题是DaemonSet的所有Logtail都共享全局配置,而单一的Logtail有配置支撑的上限,因此无法支撑应用数比较多的集群。
上述是我们给出的推荐配置方式,核心的思想是:

  1. 一个配置尽可能多的采集同类数据,减少配置数,降低DaemonSet压力;
  2. 核心的应用采集要给予充分的资源,可以使用Sidecar方式;
  3. 配置方式尽可能使用CRD方式;
  4. Sidecar由于每个Logtail是单独的配置,所以没有配置数的限制,这种比较适合于超大型的集群使用。

实践1-中小型集群

image.png
绝大部分Kubernetes集群都属于中小型的,对于中小型没有明确的定义,一般应用数在500以内,节点规模1000以内,没有职能明确的Kubernetes平台运维。这种场景应用数不会特别多,DaemonSet可以支撑所有的采集配置:

  1. 绝大部分业务应用的数据使用DaemonSet采集方式
  2. 核心应用(对于采集可靠性要求比较高,例如订单/交易系统)使用Sidecar方式单独采集

实践2-大型集群

image.png
对于一些用作PAAS平台的大型/超大型集群,一般业务在1000以上,节点规模也在1000以上,有专门的Kubernetes平台运维人员。这种场景下应用数没有限制,DaemonSet无法支持,因此必须使用Sidecar方式,整体规划如下:

  1. Kubernetes平台本身的系统组件日志、内核日志相对种类固定,这部分日志使用DaemonSet采集,主要为平台的运维人员提供服务;
  2. 各个业务的日志使用Sidecar方式采集,每个业务可以独立设置Sidecar的采集目的地址,为业务的DevOps人员提供足够的灵活性。                                                           
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
29天前
|
监控 测试技术 开发者
一行代码改进:Logtail的多行日志采集性能提升7倍的奥秘
一个有趣的现象引起了作者的注意:当启用行首正则表达式处理多行日志时,采集性能出现下降。究竟是什么因素导致了这种现象?本文将探索Logtail多行日志采集性能提升的秘密。
110 23
|
3月前
|
XML JSON 监控
告别简陋:Java日志系统的最佳实践
【10月更文挑战第19天】 在Java开发中,`System.out.println()` 是最基本的输出方法,但它在实际项目中往往被认为是不专业和不足够的。本文将探讨为什么在现代Java应用中应该避免使用 `System.out.println()`,并介绍几种更先进的日志解决方案。
75 1
|
3月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
60 1
|
4月前
|
Kubernetes API Docker
跟着iLogtail学习容器运行时与K8s下日志采集方案
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
|
4月前
|
设计模式 SQL 安全
PHP中的设计模式:单例模式的深入探索与实践在PHP的编程实践中,设计模式是解决常见软件设计问题的最佳实践。单例模式作为设计模式中的一种,确保一个类只有一个实例,并提供全局访问点,广泛应用于配置管理、日志记录和测试框架等场景。本文将深入探讨单例模式的原理、实现方式及其在PHP中的应用,帮助开发者更好地理解和运用这一设计模式。
在PHP开发中,单例模式通过确保类仅有一个实例并提供一个全局访问点,有效管理和访问共享资源。本文详细介绍了单例模式的概念、PHP实现方式及应用场景,并通过具体代码示例展示如何在PHP中实现单例模式以及如何在实际项目中正确使用它来优化代码结构和性能。
59 2
|
4月前
|
开发者 Python
基于Python的日志管理与最佳实践
日志是开发和调试过程中的重要工具,然而,如何高效地管理和利用日志常常被忽略。本文通过Python中的logging模块,探讨如何使用日志来进行调试、分析与问题排查,并提出了一些实际应用中的优化建议和最佳实践。
|
4月前
|
运维 Kubernetes 监控
Loki+Promtail+Grafana监控K8s日志
综上,Loki+Promtail+Grafana 监控组合对于在 K8s 环境中优化日志管理至关重要,它不仅提供了强大且易于扩展的日志收集与汇总工具,还有可视化这些日志的能力。通过有效地使用这套工具,可以显著地提高对应用的运维监控能力和故障诊断效率。
439 0
|
5月前
|
SQL 数据库 Java
Hibernate 日志记录竟藏着这些秘密?快来一探究竟,解锁调试与监控最佳实践
【8月更文挑战第31天】在软件开发中,日志记录对调试和监控至关重要。使用持久化框架 Hibernate 时,合理配置日志可帮助理解其内部机制并优化性能。首先,需选择合适的日志框架,如 Log4j 或 Logback,并配置日志级别;理解 Hibernate 的多级日志,如 DEBUG 和 ERROR,以适应不同开发阶段需求;利用 Hibernate 统计功能监测数据库交互情况;记录自定义日志以跟踪业务逻辑;定期审查和清理日志避免占用过多磁盘空间。综上,有效日志记录能显著提升 Hibernate 应用的性能和稳定性。
56 0
|
5月前
|
消息中间件 Prometheus 监控
Producer的监控与日志记录最佳实践
【8月更文第29天】在分布式系统中,消息队列作为关键组件之一,其稳定性和性能至关重要。生产者(Producer)负责生成并发送消息到消息队列中,因此确保生产者的健康运行是非常重要的。本文将探讨如何为生产者设置监控和日志记录,以跟踪其健康状况和性能指标。
85 0
|
5月前
|
消息中间件 Kubernetes Kafka
微服务从代码到k8s部署应有尽有系列(十一、日志收集)
微服务从代码到k8s部署应有尽有系列(十一、日志收集)

相关产品

  • 日志服务