小结 | 带你读《大规模天线波束赋形技术原理与设计 》之二十九

简介: 本章主要对大规模天线波束赋形的无线信道建模进行了分析和介绍。大规 模天线对于未来低频段和高频段无线移动通信系统都是不可或缺的关键技术, 适用于高层楼宇覆盖、室外宏覆盖、热点覆盖和无线回传等场景,起到提升频 谱效率、扩展覆盖等作用。对于这些场景进行抽象概括,得到了信道建模的场 景,分别为 UMa、UMi、RMa 和 Indoor Office 场景。

第3章

大规模天线无线信道建模

| 3.8 信道建模流程 |

| 3.9 小 结 |

本章主要对大规模天线波束赋形的无线信道建模进行了分析和介绍。大规 模天线对于未来低频段和高频段无线移动通信系统都是不可或缺的关键技术, 适用于高层楼宇覆盖、室外宏覆盖、热点覆盖和无线回传等场景,起到提升频 谱效率、扩展覆盖等作用。对于这些场景进行抽象概括,得到了信道建模的场 景,分别为 UMa、UMi、RMa 和 Indoor Office 场景。本章重点探讨了垂直维度 的引入对信道建模的影响,包括大尺度建模和小尺度建模等。主要内容包括:
① 局部坐标系与全局坐标系之间的转换方法,用于在全局坐标系内建模 天线单元的增益和场分量;
② 天线模型以及双极化天线在局部坐标系中的天线单元增益和场分量到 全局坐标系的转换方法;
③ 3D 距离的定义和应用条件,由于垂直维度的引入,部分信道建模参数 需用 3D 距离进行计算;
④ 大尺度信道建模,包括 LOS 概率计算模型、路径损耗计算模型和穿透 损耗计算模型;
⑤ 小尺度信道建模,包括垂直角度参数模型,多径分量统计相关矩阵, 垂直角度生成方法等。
最后,本章 3.8 节给出了信道建模的完整流程。
附表
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png

相关文章
信道建模流程 | 带你读《大规模天线波束赋形技术原理与设计 》之二十八
本节将详细介绍衰落信道的整体建模流程,内容上与 3D 信道模 型 3GPP TR36.873 7.3 节和 3GPP TR38.901 的 7.5 节对应。两者在内容上大体相同,前者的目标为6GHz以下的信道建模(记为模型1),后者为0.5~100GHz 的信道建模(记为模型 2)。对于 6GHz 以下的信道建模,两者均可以使用, 在下文的描述中,两者不同的地方均会列出。
信道建模流程  | 带你读《大规模天线波束赋形技术原理与设计 》之二十八
场景建模 | 带你读《大规模天线波束赋形技术原理与设计 》之二十一
本节讲述了3D 信道场景 、 UMa 场景和 UMi 场景 和 Indoor Office 场景 。
 场景建模   | 带你读《大规模天线波束赋形技术原理与设计 》之二十一
|
算法 5G 调度
多天线传输方案的选择 | 带你读《大规模天线波束赋形 技术原理与设计 》之六
CSI 的获取能力对于 MIMO 技术方案的 选择有着至关重要的影响。例如,同样是为了保证传输的可靠性,发射分集技术将同一信息的多个冗余样本通过不同的数据通道进行发送,而单流传输的波束赋形技术则是将全部的发射功率和信息馈送到理想的数据通道之中。其中的一个重要差别便是,发射机一侧能否获得及时准确的信道 状态信息。
多天线传输方案的选择  | 带你读《大规模天线波束赋形 技术原理与设计 》之六
|
数据建模 图计算 数据库管理
天线模型 | 带你读《大规模天线波束赋形技术原理与设计 》之二十三
本文介绍了两种方案,在信道模型的应用中,可以使用这两种方案对 UE 方向进行建模,并根据 不同的信道场景或不同的评估目标选择合适的方案。
天线模型  | 带你读《大规模天线波束赋形技术原理与设计 》之二十三
|
5G 调度
部署场景 | 带你读《大规模天线波束赋形技术原理与设计 》之二十
本节讲述了高层楼宇覆盖 、室外宏覆盖 、热点覆盖和无线回传 四个部署场景。
部署场景  | 带你读《大规模天线波束赋形技术原理与设计 》之二十
坐标系模型 | 带你读《大规模天线波束赋形技术原理与设计 》之二十二
本节介绍 3D 信道模型中局部坐标系和全局坐标系的定义、坐标系间的转换 关系以及双极化天线场分量在全局坐标系中的建模方法。
坐标系模型   | 带你读《大规模天线波束赋形技术原理与设计 》之二十二
|
5G 调度
时变信道下 Massive MIMO 容量分析 | 带你读《大规模天线波束赋形技术原理与设计 》之十五
随着高速铁路和高速公路场景下高数据传输速率业务需求的增加,如何提升高移动性下高数据传输速率问题成为移动通信的难点问题之一。为了解决高速移动场景下数据传输速率的瓶颈问题,采用大规模天线是主要的解决途径。
时变信道下 Massive MIMO 容量分析  | 带你读《大规模天线波束赋形技术原理与设计 》之十五
|
算法 5G
Massive MIMO 系统容量的最新研究进展 | 带你读《大规模天线波束赋形技术原理与设计 》之十四
在这一部分,将对实际应用中对大规模天线系统性能有影响的一些因素进 行研究和分析。首先,面对复杂的无线信道环境,如存在直射路径的莱斯衰落信道、相关衰落,以及终端移动下信道变化较快,需要评估大规模天线系统的 性能影响;其次,随着 Massive MIMO 的工程实用化,还需要考虑硬件的非理 想因素对系统性能的影响,如 TDD 系统中非理想的互易性对容量的影响分析后,还将评估大规模天线蜂窝系统的系统级容量,分析系统参数与蜂窝的单位面积容量之间的关系。
Massive MIMO 系统容量的最新研究进展 | 带你读《大规模天线波束赋形技术原理与设计 》之十四
非理想互易性对 Massive MIMO 容量的影响 | 带你读《大规模天线波束赋形技术原理与设计 》之十六
在大规模天线系统中,随着基站天线个数和空分用户数的增加,信道信息获 取成为系统实现的瓶颈。当采用 TDD 模式时,在相干时间内基站可以利用上行信 道估计信息来进行下行预编码的设计,进而减少下行导频以及用户 CSI 反馈的开 销。然而,实际系统中,整体通信信道不仅包括空中无线部分,还包括通信双方 收发机的射频电路。虽然空中信道满足上下行互易性,但是考虑到收发射频电路的 不一致性,如果不进行精准的电路校准,上下行整体信道无法保证互易性精度[21]。 本节将通过理论分析,研究非理想互易性对大规模 MIMO 系统性能的影响。
非理想互易性对 Massive MIMO 容量的影响 | 带你读《大规模天线波束赋形技术原理与设计 》之十六
基于导频污染的 Massive MIMO 下行链路容量分析 | 带你读《大规模天线波束赋形技术原理与设计 》之十三
在 Massive MIMO 中,理论上,当基站天线个数很多时,终端只需要已知统计信道信息,例如大尺度衰落信息,仍可以得到较好的性能。
基于导频污染的 Massive MIMO 下行链路容量分析  | 带你读《大规模天线波束赋形技术原理与设计 》之十三