对标Eureka,支持AP一致性,Nacos如何实现Raft算法

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Spring Cloud Alibaba Nacos 在 1.0.0 正式支持 AP 和 CP 两种一致性协议,其中的CP一致性协议实现,是基于简化的 Raft 的 CP 一致性。

一、快速了解Raft算法

Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议 Raft 更易于理解和去实现它。
为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导选取(leader selection)、日志复制(log replication)、安全(safety),并且使用了更强的一致性来减少了必须需要考虑的状态。

相比Paxos,Raft算法理解起来更加直观。

Raft算法将Server划分为3种状态,或者也可以称作角色:

  • Leader
    负责Client交互和log复制,同一时刻系统中最多存在1个。
  • Follower
    被动响应请求RPC,从不主动发起请求RPC。
  • Candidate

一种临时的角色,只存在于leader的选举阶段,某个节点想要变成leader,那么就发起投票请求,同时自己变成candidate。如果选举成功,则变为candidate,否则退回为follower

状态或者说角色的流转如下:

在Raft中,问题分解为:领导选取、日志复制、安全和成员变化。

复制状态机通过复制日志来实现:

日志:每台机器保存一份日志,日志来自于客户端的请求,包含一系列的命令
状态机:状态机会按顺序执行这些命令
一致性模型:分布式环境下,保证多机的日志是一致的,这样回放到状态机中的状态是一致的

Raft算法选主流程

Raft中有Term的概念,Term类比中国历史上的朝代更替,Raft 算法将时间划分成为任意不同长度的任期(term)。

选举流程

1、follower增加当前的term,转变为candidate。
2、candidate投票给自己,并发送RequestVote RPC给集群中的其他服务器。
3、收到RequestVote的服务器,在同一term中只会按照先到先得投票给至多一个candidate。且只会投票给log至少和自身一样新的candidate。

关于Raft更详细的描述,可以查看这里,从分布式一致性到共识机制(二)Raft算法

二、Nacos中的CP一致性

Spring Cloud Alibaba Nacos 在 1.0.0 正式支持 AP 和 CP 两种一致性协议,其中的CP一致性协议实现,是基于简化的 Raft 的 CP 一致性。

如何实现Raft算法

Nacos server在启动时,会通过RunningConfig.onApplicationEvent()方法调用RaftCore.init()方法。

启动选举

public static void init() throws Exception {
 
    Loggers.RAFT.info("initializing Raft sub-system");
 
    // 启动Notifier,轮询Datums,通知RaftListener
    executor.submit(notifier);
     
    // 获取Raft集群节点,更新到PeerSet中
    peers.add(NamingProxy.getServers());
 
    long start = System.currentTimeMillis();
 
    // 从磁盘加载Datum和term数据进行数据恢复
    RaftStore.load();
 
    Loggers.RAFT.info("cache loaded, peer count: {}, datum count: {}, current term: {}",
        peers.size(), datums.size(), peers.getTerm());
 
    while (true) {
        if (notifier.tasks.size() <= 0) {
            break;
        }
        Thread.sleep(1000L);
        System.out.println(notifier.tasks.size());
    }
 
    Loggers.RAFT.info("finish to load data from disk, cost: {} ms.", (System.currentTimeMillis() - start));
 
    GlobalExecutor.register(new MasterElection()); // Leader选举
    GlobalExecutor.register1(new HeartBeat()); // Raft心跳
    GlobalExecutor.register(new AddressServerUpdater(), GlobalExecutor.ADDRESS_SERVER_UPDATE_INTERVAL_MS);
 
    if (peers.size() > 0) {
        if (lock.tryLock(INIT_LOCK_TIME_SECONDS, TimeUnit.SECONDS)) {
            initialized = true;
            lock.unlock();
        }
    } else {
        throw new Exception("peers is empty.");
    }
 
    Loggers.RAFT.info("timer started: leader timeout ms: {}, heart-beat timeout ms: {}",
        GlobalExecutor.LEADER_TIMEOUT_MS, GlobalExecutor.HEARTBEAT_INTERVAL_MS);
}

在init方法主要做了如下几件事:

  1. 获取Raft集群节点 peers.add(NamingProxy.getServers());
  2. Raft集群数据恢复 RaftStore.load();
  3. Raft选举 GlobalExecutor.register(new MasterElection());
  4. Raft心跳 GlobalExecutor.register(new HeartBeat());
  5. Raft发布内容
  6. Raft保证内容一致性

选举流程

其中,raft集群内部节点间是通过暴露的Restful接口,代码在 RaftController 中。
RaftController控制器是raft集群内部节点间通信使用的,具体的信息如下

POST HTTP://{ip:port}/v1/ns/raft/vote : 进行投票请求

POST HTTP://{ip:port}/v1/ns/raft/beat : Leader向Follower发送心跳信息

GET HTTP://{ip:port}/v1/ns/raft/peer : 获取该节点的RaftPeer信息

PUT HTTP://{ip:port}/v1/ns/raft/datum/reload : 重新加载某日志信息

POST HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据并存入

DELETE HTTP://{ip:port}/v1/ns/raft/datum : Leader接收传来的数据删除操作

GET HTTP://{ip:port}/v1/ns/raft/datum : 获取该节点存储的数据信息

GET HTTP://{ip:port}/v1/ns/raft/state : 获取该节点的状态信息{UP or DOWN}

POST HTTP://{ip:port}/v1/ns/raft/datum/commit : Follower节点接收Leader传来得到数据存入操作

DELETE HTTP://{ip:port}/v1/ns/raft/datum : Follower节点接收Leader传来的数据删除操作

GET HTTP://{ip:port}/v1/ns/raft/leader : 获取当前集群的Leader节点信息

GET HTTP://{ip:port}/v1/ns/raft/listeners : 获取当前Raft集群的所有事件监听者
RaftPeerSet

心跳机制

Raft中使用心跳机制来触发leader选举。心跳定时任务是在GlobalExecutor 中,
通过 GlobalExecutor.register(new HeartBeat())注册心跳定时任务,具体操作包括:

  • 重置Leader节点的heart timeout、election timeout;
  • sendBeat()发送心跳包
 public class HeartBeat implements Runnable {
        @Override
        public void run() {
            try {

                if (!peers.isReady()) {
                    return;
                }

                RaftPeer local = peers.local();
                local.heartbeatDueMs -= GlobalExecutor.TICK_PERIOD_MS;
                if (local.heartbeatDueMs > 0) {
                    return;
                }

                local.resetHeartbeatDue();

                sendBeat();
            } catch (Exception e) {
                Loggers.RAFT.warn("[RAFT] error while sending beat {}", e);
            }

        }
}

简单说明了下Nacos中的Raft一致性实现,更详细的流程,可以下载源码,查看 RaftCore 进行了解。源码可以通过以下地址检出:

git clone https://github.com/alibaba/nacos.git

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
29天前
|
Nacos 微服务
Nacos与Eureka的区别
Eureka和Nacos均支持服务注册发现、基于心跳的健康检查及AP模式下的集群数据同步。主要区别在于:心跳频率、服务剔除机制、服务检测与清理周期不同,Nacos还额外提供配置管理功能。
39 0
|
3月前
|
算法
raft算法的自我理解
本文介绍了Raft算法的基本概念和工作原理,包括它如何通过日志复制和领导选举来实现分布式系统中不同机器的强一致性。
34 2
|
4月前
|
负载均衡 Java Nacos
SpringCloud基础1——远程调用、Eureka,Nacos注册中心、Ribbon负载均衡
微服务介绍、SpringCloud、服务拆分和远程调用、Eureka注册中心、Ribbon负载均衡、Nacos注册中心
SpringCloud基础1——远程调用、Eureka,Nacos注册中心、Ribbon负载均衡
|
3月前
|
负载均衡 算法 Nacos
SpringCloud 微服务nacos和eureka
SpringCloud 微服务nacos和eureka
80 0
|
5月前
|
负载均衡 监控 Java
SpringCloud常见面试题(一):SpringCloud 5大组件,服务注册和发现,nacos与eureka区别,服务雪崩、服务熔断、服务降级,微服务监控
SpringCloud常见面试题(一):SpringCloud 5大组件,服务注册和发现,nacos与eureka区别,服务雪崩、服务熔断、服务降级,微服务监控
SpringCloud常见面试题(一):SpringCloud 5大组件,服务注册和发现,nacos与eureka区别,服务雪崩、服务熔断、服务降级,微服务监控
|
6月前
|
算法
Bully、Raft、Zab选举算法的差异比较
Bully算法、Raft算法、Zab的差与异。他们如何脱胎于Paxos而成?
|
5月前
|
存储 算法 NoSQL
(七)漫谈分布式之一致性算法下篇:一文从根上儿理解大名鼎鼎的Raft共识算法!
Raft通过一致性检查,能在一定程度上保证集群的一致性,但无法保证所有情况下的一致性,毕竟分布式系统各种故障层出不穷,如何在有可能发生各类故障的分布式系统保证集群一致性,这才是Raft等一致性算法要真正解决的问题。
129 11
|
5月前
|
存储 算法 索引
(六)漫谈分布式之一致性算法上篇:用二十六张图一探Raft共识算法奥妙之处!
现如今,大多数分布式存储系统都投向了Raft算法的怀抱,而本文就来聊聊大名鼎鼎的Raft算法/协议!
141 8
|
5月前
|
存储 算法 Java
(五)漫谈分布式之一致性算法篇:谁说Paxos晦涩难懂?你瞧这不一学就会!
没在时代发展的洪流中泯然于众的道理很简单,是因为它们并不仅是空中楼阁般的高大上理论,而是有着完整落地的思想,它们已然成为构建分布式系统不可或缺的底层基石,而本文则来好好聊聊分布式与一致性思想的落地者:Paxos与Raft协议(算法)。
117 6
|
6月前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。

热门文章

最新文章