八年之痒!除了NLP和CV,人工智能就不能干点别的啥了?

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 从2012年AlexNet惊艳亮相开始算起,AI已经经历了将近8年的蓬勃发展期。

云栖号:https://www.aliyun.com/#module-yedOfott8
第一手的上云资讯,不同行业精选的上云企业案例库,基于众多成功案例萃取而成的最佳实践,助力您上云决策!

image

从2012年AlexNet惊艳亮相开始算起,AI已经经历了将近8年的蓬勃发展期。

这一迅猛发展尤其反映在了AI顶会的参会数据上。2013年,ICML的参会人数仅有数百名,但到了2018年,这一数量上升到了5000多。2019年12月,机器学习领域的最大型的会议NeurIPS更是聚集了13000名AI研究人员和工程师。

image

AI研究人员的迅速涌入也直接导致了论文数量的爆炸增加。如今,arXiv已有六万多篇AI论文。

2013年,一位AI专家可能会熟悉其子领域中的所有出版物。在2019年,这是不可能的。如今,行业中的绝大多数AI工程师都依赖“最佳论文”和其他简要名单来了解最新成果。

从最开始星辰大海般的探索,到如今研究领域的细分再细分,AI研究似乎也进入了“小修小补”阶段。

那么,AI研究中我们能够解决的重大问题是否已经完全被解决了呢? 下一次的AI大突破是否就要等待新的里程碑式的研究呢?

AI基因研究公司Deeptrait的创始人Sergii Shelpuk认为,我们在这一轮AI发展期中依旧大有可为。

除去自然语言处理和计算机视觉两大领域,我们还有太多领域可以开拓。

下面,我们对Sergii Shelpuk的观点进行了编译整理。

image

首先,让我们来梳理一下如今AI从业者面对一个新问题时的常见心路历程。

以计算机视觉为例,只需看一看图像识别的最新技术,然后选择适合要求的体系结构即可。在比如自然语言处理,如果需要进行情感分析等任务,同样只需浏览有关此问题的出版物,然后选择适用于您的数据,硬件和所需性能的解决方案。

即使现有出版物不存在针对特定问题的解决方案,它也涉及“关于子问题的子问题”。例如,传统的数据增强技术无法给你的数据集带来理想的结果,或者,神经网络在收集到的数据集中表现不佳,亦或是最佳的词语嵌入技术在特定任务情境下表现不佳,等等。

这些年来,人们不断遇到这些关于子问题的子问题,似乎关于AI的所有重大问题都已得到解决,越来越多的针对不断缩小的研究领域的论文的发表更加强化了人们的这种印象。

当我们开始使用DeepTrait开发用于基因组分析的AI系统时,我们查阅了现有文献。我们以为,深度学习的研究者已经详细探讨过所有相关的问题,例如异构数据分析。如今,基因组分析已成为人类研究中最有前途和最重要的领域之一,并且该领域中总共已有6万多篇AI论文发表。研究者们肯定已经完成了相对广泛而深入的工作,不是吗?

但事实证明并不是。在2019年12月12日访问arXiv并搜索“深度学习”,共有22,140篇论文。然而将搜索内容更改为“深度学习基因组”后,发现只有76篇相关的论文,其中许多论文并未解决基因组数据的问题,只是提到基因组是未来潜在的相关应用方向。

在其他论文来源(包括bioRxiv)中搜索有关基因组学的深度学习论文,也就仅有200多篇。其中绝大多数运用的还是过时的神经网络架构和训练技术,另外很大一部分错误地使用了这些工具,例如,将卷积神经网络应用于异构数据(例如SNP),这导致了模型表现不佳。我们发现这样的论文并不在少数。

那些正确使用AI工具的人主要将其应用在分析基因组的较小子序列,例如启动子或蛋白质结合位点。他们的输入数据最长为一到两万个核苷酸。相比之下,拟南芥基因中的核苷酸数量接近1.35亿,而这仅仅是我们在第一次测试中所使用的基因之一。因此,我们没有现成的范例或已有的神经网络架构可供参考,也没有针对这种大小序列的训练技术,完全没有!我们必须从头开始。

image

大家都在研究什么?

我感到奇怪,因为研究基因组数据具有巨大的潜力。高通量测序可产生大量数据,而AI似乎是理所当然的研究工具。然而,按论文的比例衡量,基因组学只占AI研究关注的1%。

那么剩下的99%在哪里?基因组数据的AI应用显然是一个机遇,如果这样一个宝贵的研究课题都被忽视了,那么也许还有更多研究课题有待探索。

我回到arXiv寻找其他潜在的AI应用方向。例如,现代天文学会生成大量数据:影像数据、射频、带注释的天体(包括天空的最小部分)等。还有可能改变我们对宇宙认知的重大问题,例如“什么是暗物质?”,例如恩里科·费米(Enrico Fermi)所提出的著名问题的“他们都在哪呢?”

利用AI的力量通过分析宇宙中探测到的天文数据来解决这些重要的谜题,应该是一个显而易见的方向,不是吗?

然而现在在arXiv搜索“深度学习暗物质”,却只有20个结果。

接下来是什么?材料科学?现代强化学习模型可以击败围棋和星际争霸2中最好的人类玩家。这些模型的表现如此出色,以至于AlphaGo的胜利被刊登在《自然》杂志上,最近,世界上排名最高的围棋选手李世石选择退役,留下一句话,“AI难以被击败”。(注:李世石的原话是“即使我成为棋手中的第一,我也无法站到顶点了,因为还有一个个体是我无法打败的。”听起来好悲壮o(╥﹏╥)o )

这个消息令人鼓舞,将相同的方法应用于材料科学怎么样?人类已经对物理和化学了解很多。我们可以构建一个模拟器,在其中可以通过强化学习来学习如何自行创建新材料(例如石墨烯)。这些新材料可以创造出新的飞机和舰船,空间升降机,水下站,甚至帮助人类移民到外太空。这应该是一个有趣的研究方向。

这世界真小

事实证明,几乎所有现代AI研究和工业应用都聚焦于两个子领域中的十几个技术问题:计算机视觉和自然语言处理。

image

我们可以使用倒金字塔为AI世界建模。每个较低的层级都启发较高的级别模式,对其进行具象化并在某种意义上对其进行定义。

最底层是非常深入的基础科学和技术。它涉及对神经网络,算法优化,统计属性以及这些工具的概率性质的理论理解。

中间存在一个技术层面的问题。这就是我前面提到的十几个技术子问题。对于计算机视觉而言,它们是用于NLP的图像识别,图像分割和图像生成,包括解析,文本分类,机器翻译和问题解答等方面,其中通用语言理解评估(GLUE, General Language Understanding Evaluation)基准很好地代表了后者。

大多数研究人员和行业专家都处于这一级别。当然不是所有的人都专注于涉及GLUE或视觉任务的研究,你可能就是一个例外而不同意我的说法。但是,作为局内人,你可以清楚地明白我们中有多少人处于这个级别之中,又有多少人从事与这份任务清单本身、变形或组合之外的工作。

中间层的界限取决于理论科学底层的发展状况。在底层出现的任何新想法,例如梯度下降,存储单元或卷积滤波器,都可以在技术问题级别实现一系列新动作。

正如理论科学的进步可以实现整个技术领域的扩展一样,解决单个技术问题也可以实现金字塔顶端的一系列工业应用成为可能。

该模型说明了行业的一个基本限制:虽然将产品从技术问题的层次转换到工业应用相对简单,但是反过来则难以实现。将应用程序流程视作一系列单向箭头,如果我们在技术水平上只有一群特定的计算机视觉和自然语言处理工具,那么许多工业应用将无法实现。如果事实是这样,绝大多数人都会这样做。一位需要设计工业应用程序的AI专家最初希望在技术层的某个地方找到答案,但实际上可能会走向更广泛且令人兴奋的技术问题。

走进AI

技术问题和工业化实践的当前状态使得从应用程序到现有技术工具的反向路径几乎难以实现。现有的AI工具箱是为计算机视觉和自然语言处理(NLP)中特定的应用量身定制的,而这些工具越先进,其关注范围就越窄。

以数据的大小为例,在植物基因组学中,我们从拟南芥的1.35亿个字母基因组开始。如果将其按比例成卷打印,一个拟南芥基因组的每个数据点将占用150卷,这还仅仅只是开始。番茄基因组将生成9.5亿个字母文本或1,055卷印刷量,大麦将生成53亿个字母或5,888卷,小麦将生成170亿个字母或18,888卷。当前的NLP无法处理这么大数据量的任何东西,我们目前所有的用于NLP的现代深度学习工具,例如类似变压器的网络,只能处理长达数千个元素的序列。

另一个例子是数据的性质。基因组由四个离散的核苷酸组成,这些核苷酸由四个字母分别表示:A,C,T和G。一个核苷酸的T字母数量不容许出现多一个或者少一个的任何偏差,此外,将单个T更改为其他字母,则可能导致完全不同的表型,致命疾病或致死性疾病。

上述潜在问题都限制了为连续数据开发的计算机视觉技术的使用。将这些数据规模加总,以方形四通道图像表示的人类基因组将具有54,772 x 54,772像素的分辨率,这远远超过了现代计算机视觉神经网络可以处理的分辨率水平。

基因组数据的性质和大小对我们目前所有最先进的深度学习技术提出了挑战,在计算机视觉或NLP领域中迄今还没有可借鉴的神经网络体系或训练实践能够解决上述问题。

天文学,化学,材料科学等数据丰富的学科,都存在着类似的问题:它们无法使用局限于狭窄的计算机视觉和NLP解决方案的现有AI工具集。目前有几种流行的解决方法,例如将十六进制数据转换为图像,调整其大小之后再使用计算机视觉工具等,但它们并没有太大帮助。

在这一点上,那些坚持不懈地寻求解决方案的人别无选择,只能进入人工智能的最深层次,即理论层次。 AI生态系统的这一根源促使了很多发现,包括关于深度神经网络如何工作,不同体系结构如何影响其行为,不同激活功能如何与特定数据分布相互关联等。换句话说,你可以使用这些工具创建自己的工具箱,并应用于你关心的工业程序。

这是一场艰难的旅程,它需要时间,深厚的专业知识,奉献精神和些许运气,但最终,你将在AI生态系统中开发出全新的技术问题层。尽管是为特定的工业应用而构建的,但该新工具集可以很多解决其他问题,例如解决图像识别的技术可以为各种产品和产品原型提供新的思路,从放射学分析到自动驾驶系统例如Tesla Autopilot等都将受益于此。

image

蓝海

解决计算机视觉和NLP的技术问题是一条非常可靠,可预测和安全的途径。在这些领域有很多研究小组,初创公司和知名公司。专门研究计算机视觉或NLP还可以确保你接触到前沿的工具,包括数据集,GPU技术,框架,以及大量的开源存储库等,这些储存库囊括了示例,库,基准测试和其他有用的资源。好的工具可以减轻我们的工作负担并提高生产力,这也许可以解释为什么AI人才在这两个特定领域中聚集。

另一方面,创造自己的用于天文学,遗传学,化学,材料科学,地球科学或经济学的AI工具箱是一项充满挑战,甚至偶尔令人沮丧的孤独旅程,你只能依靠自己和你的团队。但是,它可以使整个领域收益,足以建立另一个十亿美元级别的公司或一个研究机构。

目前,人类面临着许多至关重要但尚未解决的问题。对于其中的许多问题来说,那些勇敢的先驱们已经收集了多到无法分析的大量数据。他们的目的很简单,收集数据并继续前进。这些数据就在那里,等着人们去发现它的价值,但是有时这需要花费数年的时间。这些问题中还有许多仍未得到解答,因为它们被证明是无法明确解决的。但是,人工智能技术也因此而闻名,因为它能够学习如何破解无法解决的问题。

远离拥挤的人潮,静坐冥思,你会发现整个世界都被AI社区所忽视了。这个世界等待了数十年,翘首以盼那些AI先驱的到来。没有地图,没有线索,它们只把自身的价值送给那些勇于探索并一往无前的人。

云栖号:https://www.aliyun.com/#module-yedOfott8
第一手的上云资讯,不同行业精选的上云企业案例库,基于众多成功案例萃取而成的最佳实践,助力您上云决策!

原文发布时间:2019-12-31
本文作者:Sergii Shelpuk
本文来自阿里云云栖号合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘

相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能技术专题】「入门到精通系列教程」零基础带你进军人工智能领域的全流程技术体系和实战指南(NLP自然语言处理概念介绍)
【人工智能技术专题】「入门到精通系列教程」零基础带你进军人工智能领域的全流程技术体系和实战指南(NLP自然语言处理概念介绍)
130 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
276 65
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】python之人工智能应用篇——文本生成技术
文本生成是指使用自然语言处理技术,基于给定的上下文或主题自动生成人类可读的文本。这种技术可以应用于各种领域,如自动写作、聊天机器人、新闻生成、广告文案创作等。
127 8
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】自然语言处理(NLP)的突破,关注NLP在机器翻译、情感分析、聊天机器人等方面的最新研究成果和应用案例。
自然语言处理(NLP)作为人工智能的一个重要分支,近年来取得了显著的突破,特别在机器翻译、情感分析、聊天机器人等领域取得了显著的研究成果和广泛的应用。以下是对这些领域最新研究成果和应用案例的概述,并附带相应的代码实例。
114 1
|
5月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
245 11
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
智能时代的桥梁:自然语言处理技术在人工智能中的应用
随着人工智能技术的飞速发展,自然语言处理(NLP)作为其核心领域之一,已广泛应用于多个行业。本文将深入探讨NLP的基本概念、关键技术以及其在现代AI系统中的应用实例,旨在揭示NLP如何成为连接人类与机器的桥梁,推动智能技术向前迈进。
93 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理和人工智能有什么区别
自然语言处理和人工智能有什么区别
355 2
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能浪潮下的自然语言处理技术演进
本文从自然语言处理(NLP)技术的历史发展出发,深入剖析了在人工智能(AI)大潮中该领域的创新突破。我们将探讨深度学习如何推动语言模型的革新、多语言处理技术的发展,以及机器翻译和语音识别的最新进展。文章还将讨论这些技术进步如何影响社会,并展望未来NLP技术的潜力与挑战。
115 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解、处理和生成人类语言。
自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解、处理和生成人类语言。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是人工智能和语言学的一个交叉领域,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理(NLP)是人工智能和语言学的一个交叉领域,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。