高德网络定位算法的演进

简介: 在过去的几年中,高德网络定位算法经历了从无监督算法向有监督算法的演进,从定位精度、定位能力透出等方面都有了显著的提升。

1.导读
GPS定位精度高,且早已成为移动设备标配,但GPS也具有一些难以克服的缺陷,包括:

  • 冷启动时间长。GPS启动时,需要进行搜星,锁定卫星信号,然后再进行位置技术,这个过程可能会达到几十秒,即使采用诸如AGPS等技术,仍然有秒级的时间无法定位。
  • 室内或有遮挡的场景。GPS信号弱,无法有效定位。

用户需要持续的有效定位,因此需要另一个技术对GPS进行补充,这就是网络定位技术。

网络定位是将手机设备收到的信号(主要是基站、Wifi、蓝牙)发送到网络服务器,获得位置。之所以要将信号数据发送到网络上,是因为网络定位是利用信号指纹进行定位,需要一个庞大的且持续更新的指纹数据库,这个数据库难以同步到移动设备上。为了进行定位,需要事先建立每个位置的指纹特征,然后在定位时用实时指纹比对每个位置的历史指纹,确定位置。

高德网络定位不仅承担着高德地图用户的定位请求,还面向国内所有主流手机厂商,以及国内30万以上App提供服务,日均处理请求千亿次,峰值QPS百万级。

在过去的几年中,高德网络定位算法经历了从无监督算法向有监督算法的演进,从定位精度、定位能力透出等方面都有了显著的提升。

注:高德网络定位只存在于安卓平台上,在iOS上由于苹果公司未开放任何定位相关的指纹数据(Wifi、基站列表等),定位结果全部来自于iOS自身。

2.基于聚类的无监督算法
经典的指纹定位算法是无监督算法,其核心是计算指纹的相似性,用指纹确定位置。下图是一个例子,AP代表手机扫描到的基站和Wifi设备编号,纵轴代表不同的位置,二者交点的数值代表该位置扫描到该AP的信号强度,为空代表该位置没有扫描到该AP。
fangxing1.png

要对一个新定期请求进行定位(比如AP1:-30,AP2:-50,AP3:-90),一个最简单的方法,是用KNN逐一计算该指纹与历史指纹的相似度(比如用L2距离或者余弦相似度),取相似度最大的历史位置作为用户位置。

这有两个问题,第一是计算量太大(AP是10亿量级,loc是千亿量级),无法满足实时定位的要求,第二是历史指纹在局部可能比较稀疏,对于用户指纹无法精确匹配。

于是需要对历史数据进行预处理,提取出AP和网格的通用指纹,这样在定位时只需要比对一次即可。下图是利用一个AP的历史采集位置进行聚类,获得AP实际位置和覆盖半径的过程,有了每个AP的位置,在定位时将多个AP的位置进行加权平均即可获得最终位置。
fangxing2.png

这种方法需要解决的一个挑战是当有多个候选位置时如何选择,如下图所示,有两个候选位置。
fangxing3.png

fangxing4.png

此时需要设计一个策略进行簇选择,基于每个簇的特征进行打分,找出最有可能的一个簇作为用户位置。

基于加权平均的定位,速度很快,但精度比较差,原因是指纹在空间上的分布并不是连续的,而可能受到建筑、地形、道路的影响,呈现一种不规则的分布,于是在上面定位方式的基础上,发展出一种基于格子排序的算法,可以更精准的定位。

首先将地球划分为25*25的网格,然后统计每个网格内的指纹特征,最后进行格子排序。设候选网格为l,信号向量是S,则定位过程就是计算
fangxing5.png

根据贝叶斯公式,有
fangxing6.png

根据1-1,由于所有候选网格的分母相同,只需要计算分子,即:
fangxing7.png

其中P(l)是某个位置在全量用户位置中出现的概率,可以用定位PV表示,而P(S=S0|l)则需要计算在每个网格内出现某种信号向量的概率,由于向量维数高,概率难以计算,因此对不同维进行独立假设,认为每个信号出现的概率是独立的。有:
fangxing8.png

这样,可以基于历史指纹对每个网格内的每个AP的信号强度进行直方图统计,即可计算出概率,最后对所有格子的概率进行排序,获得概率最高的那一个,如下图:
fangxing9.png

3.基于分层排序的有监督算法
无监督算法的一个问题,是难以迭代,对于badcase无法进行有效优化,一旦调整策略就会影响到其他case,无法获得全局最优。

因此,有监督学习就变得很有必要,高德定位从近两年开始全面转向有监督学习,持续进行特征和模型设计,提升效果,取得了不错的收益,解决了50%以上的大误差问题(5公里以上),在移动Wifi识别上获得了99%以上的识别准确率。

有监督学习需要使用大量的特征,特征的计算需要消耗较多资源,考虑到定位服务要承受10万以上的QPS,模型的复杂性与效果同等重要,因此我们首先将定位服务进行了分层,上面的层级针对大网格,计算粗略的位置,下面的层级针对小网格,逐步细化位置。这样可以极大减少不必要的计算,在性能和效果间取得平衡。
fangxing10.png

对于每一个单独的算法模块,都采用类似下面的神经网络模型对每个候选网格进行打分,再使用LTR损失函数作为目标进行训练,从而获得神经网络的参数。在特征方面,同时考虑以下三类:

  • AP的动态特征,比如信号强度
  • 网格特征,比如PV、UV、AP数、周边候选网格数等
  • AP在网格上的特征,比如信号强度分布、PV、UV等

采用这种方法可以解决绝大部分格子选择不准确的问题,遗留的一个问题是当定位依据特别少的时候,比如只有一个基站和一个Wifi,二者分别位于距离较远的两个网格,此时无论选择哪个都有50%的错误概率。为了解决这个问题,我们引入了用户历史定位点辅助进行各自选择。

在特征部分加入历史定位点序列,输出一个历史位置特征(可以看成是一个预测的新位置),让这个预测位置参与网格打分。当有两个距离较远但打分接近的网格进行对比时,通过预测位置进行加权。这样模型应该可以学出这样的规律:如果网格距离预测位置比较远,打分就降低,如果比较近,分就高。通过这个方法,大误差case的比例可以降低20%。

4.场景化定位
用户在不同场景下对定位的要求是不同的,比如用户在旅途中可能只需要知道大致的位置,不需要很精确,但是在导航时就需要精确的知道自己在哪条道路上,距离出口多远。

因此,除了在整体算法架构上进行优化,高德还在不同特定场景上进行针对性的优化,满足用户不同场景下的定位需求。

室内场景

指纹定位的一个局限,是需要采集带GPS的样本作为真值进行训练,由于GPS只能在室外被采集到,即使用户在室内,其定位结果有很大概率在室外,这会对用户造成不少困扰,特别是在用户准备出行的时候,其定位点的漂移会导致起点偏离真实位置较大。

为了解决这个问题,有两个解决办法,一是采集室内真值,但这种方法需要大量人工采集工作,工作量巨大,目前高德在一些热门商场和交通枢纽进行人工指纹采集(除了基站Wifi还支持蓝牙、传感器定位)。第二个办法是借助大数据,无需人工干预,对Wifi进行建筑/POI关联,用建筑/POI位置去修正定位结果。

Wifi-POI关联有多种方法,一个简单的方法是用POI名字与Wifi名字的相似度判断是否有关联,比如麦当劳的Wifi名字就是McDonald,关联的时候需要考虑中英文、大小写、中英文缩写等。从名称能分析出关联关系的Wifi毕竟是少数。另外一种覆盖能力更强的方法是利用Wifi信号分布规律去挖掘Wifi的真实位置,毕竟绝大部分Wifi都是部署在室内的。

这里我们采用的是CNN的方法,将楼块数据、POI数据、采集真值数据绘制为二维图像,然后进行多层卷积计算,label为Wifi所在的真实楼块区域。下图中蓝色块为楼块,绿色为采集点,颜色越亮代表信号强度越高,红色点代表Wifi真实位置。
fangxing11.png

目前算法能挖掘出30%Wifi对应的真实位置,在最终定位效果上,用户在室内时,能正确定位到室内的样本比例提升了15%

高铁场景

从用户报错情况看,有大量报错是用户乘坐高铁时定位异常。高铁在近两年开通了车载Wifi,这些Wifi都是移动Wifi,因此这些AP是没有一个固定位置的,如果不进行任何处理,算法训练获得的Wifi位置一定是错误的,很大概率会在沿途的某个车站(用户集中,采集量高)。

针对这种场景,需要将移动Wifi全部去除再进行定位。我们开发了针对高铁和普通场景的移动Wifi挖掘算法,利用采集点时空分布等特征判断某个Wifi是否移动,挖掘准确率和召回率均超过99%,可以解决绝大部分高铁定位错误的问题。

地铁场景

地铁场景有点类似高铁,用户扫到的Wifi基本都是移动Wifi(少量车站有固定Wifi),因此只能借助基站进行定位。但基站深埋地下,缺乏采集数据,如何获得基站的真实位置呢?我们采用了两种策略,第一个策略是利用相邻基站信息,当用户在一个请求里或者在短暂时间段内同时扫描到地铁基站(无GPS采集)和非地铁基站(有GPS采集)时,我们可以用后者的位置去推算前者位置,当然这种方式得到的基站位置不太准确。于是我们进行了进一步优化,利用用户轨迹去精准挖掘出每个请求对应的地铁站,从而构建出指纹对应的真值。

基于以上方法,地铁内的定位精度可达到90%以上,实现地铁报站和换乘提醒。

5.未来演进
在未来,定位技术特别是移动设备的定位技术还将快速发展,主要突破可能来自以下方面:

图像定位:谷歌已经发布了基于街景的AR定位,可以解决在城市峡谷区域内的精准定位。这种定位利用了更丰富的数据源,对用户体验的提升也会非常显著。

5G定位:5G相比4G,频率更高,频带更宽,用于测距时精度更高(比如利用相位差进行传输时间计算),行业协会也在孵化5G定位相关的标准,运营商在未来可能会支持基于5G网络的定位,届时在5G覆盖区将会有类似GPS精度的定位效果。

IOT定位:随着物联网的普及,基于NB-IOT的定位技术也会应运而生,它可以使用类似基站定位的方法,或者使用P2P定位的方法为物联网设备进行定位。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
185 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
4天前
|
缓存 监控 算法
基于 C# 网络套接字算法的局域网实时监控技术探究
在数字化办公与网络安全需求增长的背景下,局域网实时监控成为企业管理和安全防护的关键。本文介绍C#网络套接字算法在局域网实时监控中的应用,涵盖套接字创建、绑定监听、连接建立和数据传输等操作,并通过代码示例展示其实现方式。服务端和客户端通过套接字进行屏幕截图等数据的实时传输,保障网络稳定与信息安全。同时,文章探讨了算法的优缺点及优化方向,如异步编程、数据压缩与缓存、错误处理与重传机制,以提升系统性能。
21 2
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
1月前
|
算法 安全 大数据
【算法合规新时代】企业如何把握“清朗·网络平台算法典型问题治理”专项行动?
在数字化时代,算法推动社会发展,但也带来了信息茧房、大数据杀熟等问题。中央网信办发布《关于开展“清朗·网络平台算法典型问题治理”专项行动的通知》,针对六大算法问题进行整治,明确企业需落实算法安全主体责任,建立健全审核与管理制度,并对算法进行全面审查和备案。企业应积极自查自纠,确保算法合规透明,防范风险,迎接新机遇。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
21天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
21天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。