如何让 python 处理速度翻倍?内含代码

简介:

阿里妹导读:作为在日常开发生产中非常实用的语言,有必要掌握一些python用法,比如爬虫、网络请求等场景,很是实用。但python是单线程的,如何提高python的处理速度,是一个很重要的问题,这个问题的一个关键技术,叫协程。本篇文章,讲讲python协程的理解与使用,主要是针对网络请求这个模块做一个梳理,希望能帮到有需要的同学。

概念篇

在理解协程这个概念及其作用场景前,先要了解几个基本的关于操作系统的概念,主要是进程、线程、同步、异步、阻塞、非阻塞,了解这几个概念,不仅是对协程这个场景,诸如消息队列、缓存等,都有一定的帮助。接下来,编者就自己的理解和网上查询的材料,做一个总结。

进程

在面试的时候,我们都会记住一个概念,进程是系统资源分配的最小单位。是的,系统由一个个程序,也就是进程组成的,一般情况下,分为文本区域、数据区域和堆栈区域。

文本区域存储处理器执行的代码(机器码),通常来说,这是一个只读区域,防止运行的程序被意外修改。

数据区域存储所有的变量和动态分配的内存,又细分为初始化的数据区(所有初始化的全局、静态、常量,以及外部变量)和为初始化的数据区(初始化为0的全局变量和静态变量),初始化的变量最初保存在文本区,程序启动后被拷贝到初始化的数据区。

堆栈区域存储着活动过程调用的指令和本地变量,在地址空间里,栈区紧连着堆区,他们的增长方向相反,内存是线性的,所以我们代码放在低地址的地方,由低向高增长,栈区大小不可预测,随开随用,因此放在高地址的地方,由高向低增长。当堆和栈指针重合的时候,意味着内存耗尽,造成内存溢出。

进程的创建和销毁都是相对于系统资源,非常消耗资源,是一种比较昂贵的操作。进程为了自身能得到运行,必须要抢占式的争夺CPU。对于单核CPU来说,在同一时间只能执行一个进程的代码,所以在单核CPU上实现多进程,是通过CPU快速的切换不同进程,看上去就像是多个进程在同时进行。

由于进程间是隔离的,各自拥有自己的内存内存资源,相比于线程的共同共享内存来说,相对安全,不同进程之间的数据只能通过 IPC(Inter-Process Communication) 进行通信共享。

线程

线程是CPU调度的最小单位。如果进程是一个容器,线程就是运行在容器里面的程序,线程是属于进程的,同个进程的多个线程共享进程的内存地址空间。

线程间的通信可以直接通过全局变量进行通信,所以相对来说,线程间通信是不太安全的,因此引入了各种锁的场景,不在这里阐述。

当一个线程崩溃了,会导致整个进程也崩溃了,即其他线程也挂了, 但多进程而不会,一个进程挂了,另一个进程依然照样运行。

在多核操作系统中,默认进程内只有一个线程,所以对多进程的处理就像是一个进程一个核心。

同步和异步

同步和异步关注的是消息通信机制,所谓同步,就是在发出一个函数调用时,在没有得到结果之前,该调用不会返回。一旦调用返回,就立即得到执行的返回值,即调用者主动等待调用结果。

所谓异步,就是在请求发出去后,这个调用就立即返回,没有返回结果,通过回调等方式告知该调用的实际结果。同步的请求,需要主动读写数据,并且等待结果;异步的请求,调用者不会立刻得到结果。而是在调用发出后,被调用者通过状态、通知来通知调用者,或通过回调函数处理这个调用。

阻塞和非阻塞

阻塞和非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态。

阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。所以,区分的条件在于,进程/线程要访问的数据是否就绪,进程/线程是否需要等待。

非阻塞一般通过多路复用实现,多路复用有 select、poll、epoll几种实现方式。

协程

在了解前面的几个概念后,我们再来看协程的概念。

协程是属于线程的,又称微线程,纤程,英文名Coroutine。举个例子,在执行函数A时,我希望随时中断去执行函数B,然后中断B的执行,切换回来执行A。这就是协程的作用,由调用者自由切换。这个切换过程并不是等同于函数调用,因为它没有调用语句。执行方式与多线程类似,但是协程只有一个线程执行。

协程的优点是执行效率非常高,因为协程的切换由程序自身控制,不需要切换线程,即没有切换线程的开销。同时,由于只有一个线程,不存在冲突问题,不需要依赖锁(加锁与释放锁存在很多资源消耗)。

协程主要的使用场景在于处理IO密集型程序,解决效率问题,不适用于CPU密集型程序的处理。然而实际场景中这两种场景非常多,如果要充分发挥CPU利用率,可以结合多进程+协程的方式。后续我们会讲到结合点。

原理篇

根据wikipedia的定义,协程是一个无优先级的子程序调度组件,允许子程序在特点的地方挂起恢复。所以理论上,只要内存足够,一个线程中可以有任意多个协程,但同一时刻只能有一个协程在运行,多个协程分享该线程分配到的计算机资源。协程是为了充分发挥异步调用的优势,异步操作则是为了避免IO操作阻塞线程。

知识准备

在了解原理前,我们先做一个知识的准备工作。

1)现代主流的操作系统几乎都是分时操作系统,即一台计算机采用时间片轮转的方式为多个用户服务,系统资源分配的基本单位是进程,CPU调度的基本单位是线程。

2)运行时内存空间分为变量区,栈区,堆区。内存地址分配上,堆区从低地到高,栈区从高往低。

3)计算机执行时一条条指令读取执行,执行到当前指令时,下一条指令的地址在指令寄存器的IP中,ESP寄存值指向当前栈顶地址,EBP指向当前活动栈帧的基地址。

4)系统发生函数调用时操作为:先将入参从右往左依次压栈,然后把返回地址压栈,最后将当前EBP寄存器的值压栈,修改ESP寄存器的值,在栈区分配当前函数局部变量所需的空间。

5)协程的上下文包含属于当前协程的栈区和寄存器里面存放的值。

事件循环

在python3.3中,通过关键字yield from使用协程,在3.5中,引入了关于协程的语法糖async和await,我们主要看async/await的原理解析。其中,事件循环是一个核心所在,编写过 js的同学,会对事件循环Eventloop更加了解, 事件循环是一种等待程序分配事件或消息的编程架构(维基百科)。在python中,asyncio.coroutine 修饰器用来标记作为协程的函数, 这里的协程是和asyncio及其事件循环一起使用的,而在后续的发展中,async/await被使用的越来越广泛。

async/await

async/await是使用python协程的关键,从结构上来看,asyncio 实质上是一个异步框架,async/await 是为异步框架提供的 API已方便使用者调用,所以使用者要想使用async/await 编写协程代码,目前必须机遇 asyncio 或其他异步库。

Future

在实际开发编写异步代码时,为了避免太多的回调方法导致的回调地狱,但又需要获取异步调用的返回结果结果,聪明的语言设计者设计了一个 叫Future的对象,封装了与loop 的交互行为。其大致执行过程为:程序启动后,通过add_done_callback 方法向 epoll 注册回调函数,当 result 属性得到返回值后,主动运行之前注册的回调函数,向上传递给 coroutine。这个Future对象为asyncio.Future。

但是,要想取得返回值,程序必须恢复恢复工作状态,而由于Future 对象本身的生存周期比较短,每一次注册回调、产生事件、触发回调过程后工作可能已经完成,所以用 Future 向生成器 send result 并不合适。所以这里又引入一个新的对象 Task,保存在Future 对象中,对生成器协程进行状态管理。

Python 里另一个 Future 对象是 concurrent.futures.Future,与 asyncio.Future 互不兼容,容易产生混淆。区别点在于,concurrent.futures 是线程级的 Future 对象,当使用 concurrent.futures.Executor 进行多线程编程时,该对象用于在不同的 thread 之间传递结果。

Task

上文中提到,Task是维护生成器协程状态处理执行逻辑的的任务对象,Task 中有一个_step 方法,负责生成器协程与 EventLoop 交互过程的状态迁移,整个过程可以理解为:Task向协程 send 一个值,恢复其工作状态。当协程运行到断点后,得到新的Future对象,再处理 future 与 loop 的回调注册过程。

Loop

在日常开发中,会有一个误区,认为每个线程都可以有一个独立的 loop。实际运行时,主线程才能通过 asyncio.get_event_loop() 创建一个新的 loop,而在其他线程时,使用 get_event_loop() 却会抛错。正确的做法为通过 asyncio.set_event_loop() ,将当前线程与 主线程的loop 显式绑定。

Loop有一个很大的缺陷,就是 loop 的运行状态不受 Python 代码控制,所以在业务处理中,无法稳定的将协程拓展到多线程中运行。

总结

实战篇

介绍完概念和原理,我来看看如何使用,这里,举一个实际场景的例子,来看看如何使用python的协程。

场景

外部接收一些文件,每个文件里有一组数据,其中,这组数据需要通过http的方式,发向第三方平台,并获得结果。

分析

由于同一个文件的每一组数据没有前后的处理逻辑,在之前通过Requests库发送的网络请求,串行执行,下一组数据的发送需要等待上一组数据的返回,显得整个文件的处理时间长,这种请求方式,完全可以由协程来实现。

为了更方便的配合协程发请求,我们使用aiohttp库来代替requests库,关于aiohttp,这里不做过多剖析,仅做下简单介绍。

aiohttp

aiohttp是asyncio和Python的异步HTTP客户端/服务器,由于是异步的,经常用在服务区端接收请求,和客户端爬虫应用,发起异步请求,这里我们主要用来发请求。

aiohttp支持客户端和HTTP服务器,可以实现单线程并发IO操作,无需使用Callback Hell即可支持Server WebSockets和Client WebSockets,且具有中间件。

代码实现

直接上代码了,talk is cheap, show me the code~

import aiohttp
import asyncio
from inspect import isfunction
import time
import logger

@logging_utils.exception(logger)
def request(pool, data_list):
    loop = asyncio.get_event_loop()
    loop.run_until_complete(exec(pool, data_list))


async def exec(pool, data_list):
    tasks = []
    sem = asyncio.Semaphore(pool)
    for item in data_list:
        tasks.append(
            control_sem(sem,
                        item.get("method", "GET"),
                        item.get("url"),
                        item.get("data"),
                        item.get("headers"),
                        item.get("callback")))
    await asyncio.wait(tasks)


async def control_sem(sem, method, url, data, headers, callback):
    async with sem:
        count = 0
        flag = False
        while not flag and count < 4:
            flag = await fetch(method, url, data, headers, callback)
            count = count + 1
            print("flag:{},count:{}".format(flag, count))
        if count == 4 and not flag:
            raise Exception('EAS service not responding after 4 times of retry.')


async def fetch(method, url, data, headers, callback):
    async with aiohttp.request(method, url=url, data=data, headers=headers) as resp:
        try:
            json = await resp.read()
            print(json)
            if resp.status != 200:
                return False
            if isfunction(callback):
                callback(json)
            return True
        except Exception as e:
            print(e)

这里,我们封装了对外发送批量请求的request方法,接收一次性发送的数据多少,和数据综合,在外部使用时,只需要构建好网络请求对象的数据,设定好请求池大小即可,同时,设置了重试功能,进行了4次重试,防止在网络抖动的时候,单个数据的网络请求发送失败。

最终效果

在使用协程重构网络请求模块之后,当数据量在1000的时候,由之前的816s,提升到424s,快了一倍,且请求池大小加大的时候,效果更明显,由于第三方平台同时建立连接的数据限制,我们设定了40的阀值。可以看到,优化的程度很显著。

编者说

人生苦短,我用python。协程好不好,谁用谁知道。如果有类似的场景,可以考虑启用,或者其他场景,欢迎留言讨论。

参考资料:

理解async/await:

https://segmentfault.com/a/1190000015488033?spm=ata.13261165.0.0.57d41b119Uyp8t

协程概念,原理(c++和node.js实现)

https://cnodejs.org/topic/58ddd7a303d476b42d34c911?spm=ata.13261165.0.0.57d41b119Uyp8tyuanwe

原文发布时间:2019-12-23
作者: 墨辨
本文来自阿里云合作伙伴“阿里技术”,了解相关信息可以关注“阿里技术”。

目录
相关文章
|
9天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
28 11
|
24天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
27天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
28天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
23天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
23 1
|
24天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
28天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
34 5
|
26天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
41 2
|
28天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
58 4
|
28天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
33 2