Python数据可视化:5段代码搞定散点图绘制与使用,值得收藏

简介: 什么是散点图?可以用来呈现哪些数据关系?在数据分析过程中可以解决哪些问题?怎样用Python绘制散点图?本文逐一为你解答。

以下文章来源于大数据DT ,作者屈希峰
文章链接:https://mp.weixin.qq.com/s/PKvsyOHhZJHAZPR-ghdNBA

image.png

01 概述

散点图(Scatter)又称散点分布图,是以一个变量为横坐标,另一个变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。

特点是能直观表现出影响因素和预测对象之间的总体关系趋势。优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系。散点图不仅可传递变量间关系类型的信息,还能反映变量间关系的明确程度。

通过观察散点图数据点的分布情况,我们可以推断出变量间的相关性。如果变量之间不存在相互关系,那么在散点图上就会表现为随机分布的离散的点,如果存在某种相关性,那么大部分的数据点就会相对密集并以某种趋势呈现。

数据的相关关系大体上可以分为:正相关(两个变量值同时增长)、负相关(一个变量值增加,另一个变量值下降)、不相关、线性相关、指数相关等,表现在散点图上的大致分布如图1所示。那些离点集群较远的点我们称之为离群点或者异常点。

image.png
▲图1 散点数据的相关性

在Python体系中,可使用Scipy、Statsmodels或Sklearn等对离散点进行回归分析,归纳现有数据并进行预测分析。对于那些变量之间存在密切关系,但是这些关系又不像数学公式和物理公式那样能够精确表达的,散点图是一种很好的图形工具,可以进行直观展示,如图2所示。

image.png
▲图2 散点数据拟合(线性)

但是在分析过程中需要注意,变量之间的相关性并不等同于确定的因果关系,仍需要考虑其他影响因素。

02 实例

散点图代码示例如下所示。

代码示例①

image.png

运行结果如图3所示。

image.png
▲图3 代码示例①运行结果

代码示例①中第7行使用scatter方法进行散点图绘制;第11行采用circle方法进行散点图绘制(推荐)。关于这两个方法的参数说明如下。

p.circle(x, y, kwargs)参数说明。**

  • x (str or seq[float]) : 离散点的x坐标,列名或列表
  • y (str or seq[float]) : 离散点的y坐标
  1. (str or list[float]) : 离散点的大小,屏幕像素单位
  • marker (str, or list[str]) : 离散点标记类型名称或名称列表
  • color (color value, optional) : 填充及轮廓线的颜色
  • source(~bokeh.models.sources.ColumnDataSource) : Bokeh专属数据格式
  • **kwargs: 其他自定义属性;其中标记点类型marker默认值为:“marker="circle"”,可以用“radius”定义圆的半径大小(单位为坐标轴单位)。这在Web数据化中非常有用,不同的方式,在不同的设备上的展示效果会有些许差异。

p.scatter(x, y, kwargs)参数说明。**

  • x(:class:~bokeh.core.properties.NumberSpec ) : x坐标
  • y(:class:~bokeh.core.properties.NumberSpec ) : y坐标
  • angle(:class:~bokeh.core.properties.AngleSpec ) : 旋转角度
  • angle_units(:class:~bokeh.core.enums.AngleUnits) : (default: 'rad') 默认:弧度,也可以采用度('degree')
  • fill_alpha(:class:~bokeh.core.properties.NumberSpec ) : (default: 1.0) 填充透明度,默认:不透明
  • fill_color(:class:~bokeh.core.properties.ColorSpec ) : (default: 'gray') 填充颜色,默认:灰色
  • line_alpha(:class:~bokeh.core.properties.NumberSpec ) : (default: 1.0) 轮廓线透明度,默认:不透明
  • line_cap :(:class:~bokeh.core.enums.LineCap ) : (default: 'butt') 线端(帽)
  • line_color(:class:~bokeh.core.properties.ColorSpec ) : (default: 'black') 轮廓线颜色,默认:黑色
  • line_dash(:class:~bokeh.core.properties.DashPattern ) : (default: []) 虚线
  • line_dash_offset(:class:~bokeh.core.properties.Int ) : (default: 0) 虚线偏移
  • line_join(:class:~bokeh.core.enums.LineJoin ) : (default: 'bevel')
  • line_width(:class:~bokeh.core.properties.NumberSpec ) : (default: 1) 线宽,默认:1

另外,Bokeh中的一些属性,如~bokeh.core.properties.NumberSpec ~bokeh.core.properties.ColorSpec可以在Jupyter notebook中通过import bokeh.core.properties.NumberSpec 导入该属性,然后再查看其详细的使用说明。

代码示例②

# 数据  
N = 4000  
x = np.random.random(size=N) * 100  # 随机点x坐标  
y = np.random.random(size=N) * 100  # 随机点y坐标  
radii = np.random.random(size=N) * 1.5  # 随机半径  
# 工具条  
TOOLS="hover,crosshair,pan,wheel_zoom,box_zoom,reset,tap,save,box_select,poly_select,lasso_select"  
# RGB颜色,画布1,绘图1  
colors2 = ["#%02x%02x%02x" % (int(r), int(g), 150) for r, g in zip(50+2*x, 30+2*y)]  
p1 = figure(width=300, height=300, tools=TOOLS)  
p1.scatter(x,y, radius=radii, fill_color=colors2, fill_alpha=0.6, line_color=None)  
# RGB颜色,画布2,绘图2  
colors2 = ["#%02x%02x%02x" % (150, int(g), int(b)) for g, b in zip(50+2*x, 30+2*y)]  
p2 = figure(width=300, height=300, tools=TOOLS)  
p2.scatter(x,y, radius=radii, fill_color=colors2, fill_alpha=0.6, line_color=None)  
# 直接显示  
# show(p1)  
# show(p2)  
# 网格显示  
from bokeh.layouts import gridplot  
grid = gridplot([[p1, p2]])   
show(grid)

运行结果如图4所示。

image.png
▲图4 代码示例②运行结果

代码示例②中第11行和第15行使用scatter方法进行散点图绘制。第7行工具条中的不同工具定义,第9行数据点的不同颜色定义,第20行和第21行采用网格显示图形,可以提前了解这些技巧,具体使用方法在下文中会专门进行介绍。

代码示例③

from bokeh.sampledata.iris import flowers  
# 配色  
colormap = {'setosa': 'red', 'versicolor': 'green', 'virginica': 'blue'}  
colors = [colormap[x] for x in flowers['species']]  
# 画布  
p = figure(title = "Iris Morphology")  
# 绘图  
p.circle(flowers["petal_length"], flowers["petal_width"],  
         color=colors, fill_alpha=0.2, size=10)  
# 其他  
p.xaxis.axis_label = 'Petal Length'  
p.yaxis.axis_label = 'Petal Width'  
# 显示  
show(p)

运行结果如图5所示。

代码示例③再次对前面提到的鸢尾花的数据集进行分析,图5中x轴为花瓣长度,y轴为花瓣宽度,据此可以将该散点数据聚类为3类。同时,该段代码展示了常规图形的绘制流程,含x、y轴的标签。

image.png
▲图5 代码示例③运行结果

代码示例④

from bokeh.layouts import column, gridplot  
from bokeh.models import BoxSelectTool, Div  
# 数据  
x = np.linspace(0, 4*np.pi, 100)  
y = np.sin(x)  
# 工具条  
TOOLS = "wheel_zoom,save,box_select,lasso_select,reset"  
# HTML代码  
div = Div(text=""" 
<p>Bokeh中的画布可通过多种布局方式进行显示;</p> 
<p>通过配置参数BoxSelectTool,在图中用鼠标选择数据,采用不同方式进行交互。</p>
""") # HTML代码直接作为一个图层显示,也可以作为整个HTML文档  
# 视图属性  
opts = dict(tools=TOOLS, plot_width=350, plot_height=350)  
# 绘图1  
p1 = figure(title="selection on mouseup", **opts)  
p1.circle(x, y, color="navy", size=6, alpha=0.6)  
# 绘图2  
p2 = figure(title="selection on mousemove", **opts)  
p2.square(x, y, color="olive", size=6, alpha=0.6)  
p2.select_one(BoxSelectTool).select_every_mousemove = True  
# 绘图3  
p3 = figure(title="default highlight", **opts)  
p3.circle(x, y, color="firebrick", alpha=0.5, size=6)  
# 绘图4  
p4 = figure(title="custom highlight", **opts)  
p4.square(x, y, color="navy", size=6, alpha=0.6,  
          nonselection_color="orange", nonselection_alpha=0.6)  
# 布局  
layout = column(div,  
                gridplot([[p1, p2], [p3, p4]], toolbar_location="right"),  
                sizing_mode="scale_width")  # sizing_mode 根据窗口宽度缩放图像  
# 绘图  
show(layout)

Bokeh中的画布可通过多种布局方式进行显示:通过配置视图参数,在视图中进行交互可视化。运行结果如图6所示。

image.png
▲图6 代码示例④运行结果

代码示例④让读者感受一下Bokeh的交互效果,Div方法可以直接使用HTML标签,其作为一个独立的图层进行显示(第30行)。另外需要注意,可以通过nonselection_nonselection_alphanonselection_fill_alpha设套索置选取数据时的散点的颜色、透明度等。

代码示例⑤

from bokeh.models import (  
       ColumnDataSource,  
       Range1d, DataRange1d,  
       LinearAxis, SingleIntervalTicker, FixedTicker,  
       Label, Arrow, NormalHead,  
       HoverTool, TapTool, CustomJS)  
from bokeh.sampledata.sprint import sprint  
abbrev_to_country = {  
      "USA": "United States",  
      "GBR": "Britain",  
      "JAM": "Jamaica",  
      "CAN": "Canada",  
      "TRI": "Trinidad and Tobago",  
      "AUS": "Australia",  
      "GER": "Germany",  
      "CUB": "Cuba",  
      "NAM": "Namibia",  
      "URS": "Soviet Union",  
      "BAR": "Barbados",  
      "BUL": "Bulgaria",  
      "HUN": "Hungary",  
      "NED": "Netherlands",  
      "NZL": "New Zealand",  
      "PAN": "Panama",  
      "POR": "Portugal",  
      "RSA": "South Africa",  
      "EUA": "United Team of Germany",  
}  
gold_fill   = "#efcf6d"  
gold_line   = "#c8a850"  
silver_fill = "#cccccc"  
silver_line = "#b0b0b1"  
bronze_fill = "#c59e8a"  
bronze_line = "#98715d"  
fill_color = { "gold": gold_fill, "silver": silver_fill, "bronze": bronze_fill }  
line_color = { "gold": gold_line, "silver": silver_line, "bronze": bronze_line }  
def selected_name(name, medal, year):  
    return name if medal == "gold" and year in [1988, 1968, 1936, 1896] else ""  
t0 = sprint.Time[0]  
sprint["Abbrev"]       = sprint.Country  
sprint["Country"]      = sprint.Abbrev.map(lambda abbr: abbrev_to_country[abbr])  
sprint["Medal"]        = sprint.Medal.map(lambda medal: medal.lower())  
sprint["Speed"]        = 100.0/sprint.Time  
sprint["MetersBack"]   = 100.0*(1.0 - t0/sprint.Time)  
sprint["MedalFill"]    = sprint.Medal.map(lambda medal: fill_color[medal])  
sprint["MedalLine"]    = sprint.Medal.map(lambda medal: line_color[medal])  
sprint["SelectedName"] = sprint[["Name", "Medal", "Year"]].apply(tuple, axis=1).map(lambda args: selected_name(*args))  
source = ColumnDataSource(sprint)  
xdr = Range1d(start=sprint.MetersBack.max()+2, end=0)               # XXX: +2 is poor-man's padding (otherwise misses last tick)  
ydr = DataRange1d(range_padding=4, range_padding_units="absolute")  
plot = figure(  
    x_range=xdr, y_range=ydr,  
    plot_width=1000, plot_height=600,  
    toolbar_location=None,  
    outline_line_color=None, y_axis_type=None)  
plot.title.text = "Usain Bolt vs. 116 years of Olympic sprinters"  
plot.title.text_font_size = "14pt"  
plot.xaxis.ticker = SingleIntervalTicker(interval=5, num_minor_ticks=0)  
plot.xaxis.axis_line_color = None  
plot.xaxis.major_tick_line_color = None  
plot.xgrid.grid_line_dash = "dashed"  
yticker = FixedTicker(ticks=[1900, 1912, 1924, 1936, 1952, 1964, 1976, 1988, 2000, 2012])  
yaxis = LinearAxis(ticker=yticker, major_tick_in=-5, major_tick_out=10)  
plot.add_layout(yaxis, "right")  
medal = plot.circle(x="MetersBack", y="Year", radius=dict(value=5, units="screen"),  
    fill_color="MedalFill", line_color="MedalLine", fill_alpha=0.5, source=source, level="overlay")  
plot.text(x="MetersBack", y="Year", x_offset=10, y_offset=-5, text="SelectedName",  
    text_align="left", text_baseline="middle", text_font_size="9pt", source=source)  
no_olympics_label = Label(  
    x=7.5, y=1942,  
    text="No Olympics in 1940 or 1944",  
    text_align="center", text_baseline="middle",  
    text_font_size="9pt", text_font_style="italic", text_color="silver")  
no_olympics = plot.add_layout(no_olympics_label)  
x = sprint[sprint.Year == 1900].MetersBack.min() - 0.5  
arrow = Arrow(x_start=x, x_end=5, y_start=1900, y_end=1900, start=NormalHead(fill_color="black", size=6), end=None, line_width=1.5)  
plot.add_layout(arrow)  
meters_back = Label(  
    x=5, x_offset=10, y=1900,  
    text="Meters behind 2012 Bolt",  
    text_align="left", text_baseline="middle",  
    text_font_size="10pt", text_font_style="bold")  
plot.add_layout(meters_back)  
disclaimer = Label(  
    x=0, y=0, x_units="screen", y_units="screen",  
    text="This chart includes medals for the United States and Australia in the \"Intermediary\" Games of 1906, which the I.O.C. does not formally recognize.",  
    text_font_size="8pt", text_color="silver")  
plot.add_layout(disclaimer, "below")  
tooltips = """ 
<div> 
    <span style="font-size: 15px;">@Name</span>  
    <span style="font-size: 10px; color: #666;">(@Abbrev)</span> 
</div> 
<div> 
    <span style="font-size: 17px; font-weight: bold;">@Time{0.00}</span>  
    <span style="font-size: 10px; color: #666;">@Year</span> 
</div> 
<div style="font-size: 11px; color: #666;">@{MetersBack}{0.00} meters behind</div> 
"""  
plot.add_tools(HoverTool(tooltips=tooltips, renderers=[medal]))  
open_url = CustomJS(args=dict(source=source), code=""" 
source.inspected._1d.indices.forEach(function(index) { 
    var name = source.data["Name"][index]; 
    var url = "http://en.wikipedia.org/wiki/" + encodeURIComponent(name); 
    window.open(url); 
}); 
""")  
plot.add_tools(TapTool(callback=open_url, renderers=[medal], behavior="inspect"))
show(plot)

运行结果如图7所示。

image.png
▲图7 代码示例⑤运行结果

代码示例⑤展示了短跑选手博尔特与116年来奥运会其他短跑选手成绩的对比情况。上述代码包含数据预处理、自定义绘图属性、数据标记、交互式显示等较为复杂的操作,不作为本文重点;读者仅需要知道通过哪些代码可以实现哪些可视化的效果即可。

本文通过5个代码示例展示了散点图的绘制技巧,绘制难度也逐渐增大,与此同时,展现的效果也越来越好。读者在学习过程中可以多思考,在这个示例中哪些数据需要交互式展示,采用哪种展示方式更好。

关于作者:屈希峰,资深Python工程师,Bokeh领域的实践者和布道者,对Bokeh有深入的研究。擅长Flask、MongoDB、Sklearn等技术,实践经验丰富。知乎多个专栏(Python中文社区、Python程序员、大数据分析挖掘)作者,专栏累计关注用户十余万人。

目录
相关文章
|
3天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
37 19
|
2天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
2天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
13 5
|
2天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
11 4
|
3天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
2天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
10 2
|
4天前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
22 3
|
2天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
10 1
|
3天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
4天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
下一篇
无影云桌面