Golang 新手教程:入门速成指南

简介: 在许多语言中,有许多方法可以解决某些给定的问题。因此 程序员可以花很多时间思考解决问题的最佳方法。 然而,Go 却是只有一种正确的方法来解决问题的语言。 这节省了开发人员的时间,并使大型代码库易于维护。 Go 中没有地图和过滤器等 “富有表现力” 的功能。

原文链接
image.png
让我们从 Go(或 Golang)的一个小介绍开始。 Go 由 Google 工程师 Robert Griesemer,Rob Pike 和 Ken Thompson 设计。 它是一种静态类型的编译语言。 第一个版本于 2012 年 3 月作为开源发布。

“Go 是一种开源编程语言,可以轻松构建的简单,可靠,高效的软件”。 --- 关于 go

在许多语言中,有许多方法可以解决某些给定的问题。因此 程序员可以花很多时间思考解决问题的最佳方法。
然而,Go 却是只有一种正确的方法来解决问题的语言。
这节省了开发人员的时间,并使大型代码库易于维护。 Go 中没有地图和过滤器等 “富有表现力” 的功能。

“如果你有增加表现力的功能,通常会增加费用” --- Rob Pike

入门

Go 是由包组成的。 main 包告诉 Go 编译器该程序可以被编译成可执行文件,而不是一个共享的库。它是应用程序的入口。main 包被定义为如下格式:

package main

接下来,让我们通过在 Go 工作区中创建一个文件 main.go 来编写一个简单的 hello world 示例。

go的工作区

Go 中的工作空间由环境变量「GOPATH」定义。你写的任何代码都将写在工作区内。Go 将搜索 GOPATH 目录中的任何包,或者在安装 Go 时默认设置的 GOROOT 目录。 GOROOT 是安装 go 的路径。

将 GOPATH 设置为你想要的目录。 现在,让我们将它添加到文件夹〜/ workspace 中。

#写入 env
export GOPATH=~/workspace

#cd 到工作区目录\
cd ~/workspace

使用我们刚刚创建的工作空间文件夹中的以下代码创建文件 main.go。

Hello World!

package main

import (
 "fmt"
)

func main(){
  fmt.Println("Hello World!")
}

在上面的 demo 中, fmt 是 Go 中的内置包,它实现了格式化 I / O 的功能。
在 Go 中我们导入一个包使用 import 关键字func main 是代码执行的入口。Println 是 fmt 包中的一个函数,它为我们打印 “hello world”。
让我们看一下运行这个文件。 我们可以通过两种方式运行 Go 命令。 我们知道,Go 是一种编译语言,所以我们首先需要在执行之前编译它。

> go build main.go

这会创建一个二进制可执行文件 main,现在我们可以运行它:

> ./main
 # Hello World!

还有另一种更简单的方法来运行程序。 go run 命令有助于抽象编译步骤。 您只需运行以下命令即可执行该程序。

go run main.go
 # Hello World!

您可以使用 https://play.golang.org 来运行本文提到的代码。

变量

变量在 Go 语言中是一个很明确的定义。 Go 是一种静态类型的语言。这意味着在声明变量时我们就需要明确变量的类型。一般一个变量的定义如下:

var a int

上面的实例中,我们定义了一个 int 类型的变量 a ,默认会被赋值成 0 。使用以下语法可以初始化改变变量的值:

var a = 1

这里我们没有制定变量 a 的类型,在我们给它初始化为 1 时,它就自动被定义成了 int 类型的变量。
我们也可以使用一种更简短的语法来定义它:

message := "hello world"

我们也可以在同一行声明多个同类型变量:

var b, c int = 2, 3

数据类型

跟任何其他编程语言一样,Go 语言支持各种不同的数据结构。 让我们探讨一下:
Number, String, and Boolean
一些受支持的 number 存储类型是:int, int8, int16, int32, int64,uint, uint8, uint16, uint32, uint64, uintptr...
string 类型存储一些列的字节。 它用关键字string 表示和声明。
boolean 使用关键字 bool 存储布尔值。
Go 还支持复数类型数据类型,可以使用complex64 和 complex128 声明。

var a bool = true
var b int = 1
var c string = 'hello world'
var d float32 = 1.222
var x complex128 = cmplx.Sqrt(-5 + 12i)

数组,切片,以及 Maps

数组是相同数据类型的元素序列。 数组在声明中定义要指定长度,因此不能进行扩展。 数组声明为:

var a [5]int

数组也可以是多维的。 我们可以使用以下格式创建它们:

var multiD [2][3]int

当数组的值在运行时不能进行更改。 数组也不提供获取子数组的能力。 为此,Go 有一个名为切片的数据类型。
切片存储一系列元素,可以随时扩展。 切片声明类似于数组声明 --- 没有定义容量:

var b []int

这将创建一个零容量和零长度的切片。 切片也可以定义容量和长度。 我们可以使用以下语法:

numbers := make([]int,5,10)

这里,切片的初始长度为 5,容量为 10。
切片是数组的抽象。 切片使用数组作为底层结构。 切片包含三个组件:容量,长度和指向底层数组的指针,如下图所示:
image.png
图片地址: https://blog.golang.org/go-slices-usage-an...

通过使用 append 或 copy 函数可以增加切片的容量。 append 函数可以为数组的末尾增加值,并在需要时增加容量。

numbers = append(numbers, 1, 2, 3, 4)

增加切片容量的另一种方法是使用复制功能。 只需创建另一个具有更大容量的切片,并将原始切片复制到新创建的切片:

// 创建切片
number2 := make([]int, 15)
// 将原始切片复制到新切片
copy(number2, numbers)

我们可以创建切片的子切片。 这可以使用以下命令完成:

// 初始化长度为 4,以及赋值
number2 := []int{1,2,3,4}
fmt.Println(numbers) // -> [1 2 3 4]
// 创建子切片
slice1 := number2[2:]
fmt.Println(slice1) // -> [3 4]
slice2 := number2[:3]
fmt.Println(slice2) // -> [1 2 3]
slice3 := number2[1:4]
fmt.Println(slice3) // -> [2 3 4]

map 是 go 的一种 Key-Value 类型的数据结构,我们可以通过下面的命令声明一个 map :

m := make(map[string]int)

m 是 一个 Key 类型为 string、Value 类型为 int 的 map 类型的变量。我们可以很容易地添加键值对到 map 中:

// adding key/value
m["clearity"] = 2
m["simplicity"] = 3
// printing the values
fmt.Println(m["clearity"]) // -> 2
fmt.Println(m["simplicity"]) // -> 3

类型转化

通过类型转化,能将一种类型转为另一种类型。让我们来看一个简单的例子:

a := 1.1
b := int(a)
fmt.Println(b)
//-> 1

并不是所有类型都可以转为另一种类型。需要确保数据类型是可以转化的。

流程控制
if else

对于流程控制,我们可以使用 if-else 语句,如下例所示。 确保花括号与条件位于同一行。

if num := 9; num < 0 {
 fmt.Println(num, "is negative")
} else if num < 10 {
 fmt.Println(num, "has 1 digit")
} else {
 fmt.Println(num, "has multiple digits")
}

switch case

Switch cases 有助于组织多个条件语句。 以下示例显示了一个简单的 switch case 语句:

i := 2
switch i {
case 1:
 fmt.Println("one")
case 2:
 fmt.Println("two")
default:
 fmt.Println("none")
}

循环

Go 为循环设置了一个关键字。 单个 for 循环命令有助于实现不同类型的循环:

i := 0
sum := 0
for i < 10 {
 sum += 1
  i++
}
fmt.Println(sum)

上面的示例类似于 C 中的 while 循环。对于 for 循环,可以使用相同的 for 语句

sum := 0
for i := 0; i < 10; i++ {
  sum += i
}
fmt.Println(sum)

Go 中的无限循环:

for {
}

指针

Go 支持指针。指针是保存值的地址的地方。 一个指针用 * 定义 。根据数据类型定义指针。 例:

var ap *int

上面的 ap 是指向整数类型的指针。& 运算符可用于获取变量的地址。

a := 12
ap = &a

可以使用 * 运算符访问指针指向的值:

fmt.Println(*ap)
// => 12

在将结构体作为参数传递或者为已定义类型声明方法时,通常首选指针。
传递值时,实际复制的值意味着更多的内存
传递指针后,函数更改的值将反映在方法 / 函数调用者中。
例子:

func increment(i *int) {
  *i++
}
func main() {
  i := 10
  increment(&i)
  fmt.Println(i)
}
//=> 11

Note: 当你在博客中尝试示例代码时,不要忘记将其包含在 main 包中,并在需要时导入 fmt 或其他包,如上面第一个 main.go 示例所示。

函数

main 函数 定义在 main 包中,是程序执行的入口。可以定义和使用更多功能。 让我们看一个简单的例子:

func add(a int, b int) int {
  c := a + b
  return c
}
func main() {
  fmt.Println(add(2, 1))
}
//=> 3

上面的例子中可以看到,使用 func 关键字后面跟函数名定义 Go 的函数
函数的返回值也可以在函数中预先定义:

func add(a int, b int) (c int) {
  c = a + b
  return
}
func main() {
  fmt.Println(add(2, 1))
}
//=> 3

这里 c 被定义为返回变量。 因此,定义的变量 c 将自动返回,而无需在结尾的 return 语句中再次定义。
你还可以从单个函数返回多个返回值,将返回值与逗号分隔开。

func add(a int, b int) (int, string) {
  c := a + b
  return c, "successfully added"
}
func main() {
  sum, message := add(2, 1)
  fmt.Println(message)
  fmt.Println(sum)
}

方法,结构体,以及接口

Go 不是绝对的面向对象的语言, 但是使用结构体,接口和方法,它有很多面向对象的风格以及对面向对象的支持。

结构体

结构体是不同字段的类型集合。 结构用于将数据分组在一起。 例如,如果我们想要对 Person 类型的数据进行分组,我们会定义一个 person 的属性,其中可能包括姓名,年龄,性别。 可以使用以下语法定义结构:

type person struct {
  name string
  age int
  gender string
}

在定义了 person 结构体的情况下,现在让我们创建一个 person 实例 p:

//方式1:指定属性和值
p := person{name: "Bob", age: 42, gender: "Male"}
//方式2:指定值
person{"Bob", 42, "Male"}

我们可以用英文的点号(.)轻松访问这些数据

p.name
//=> Bob
p.age
//=> 42
p.gender
//=> Male

你还可以使用其指针直接访问结构体里面的属性:

pp = &person{name: "Bob", age: 42, gender: "Male"}
pp.name
//=> Bob

方法

方法是一个特殊类型的带有返回值的函数。返回值既可以是值,也可以是指针。让我们创建一个名为 describe 的方法,它具有我们在上面的例子中创建的 person 结构体类型的返回值:

package main
import "fmt"

//定义结构体
type person struct {
  name   string
  age    int
  gender string
}

// 方法定义
func (p *person) describe() {
  fmt.Printf("%v is %v years old.", p.name, p.age)
}
func (p *person) setAge(age int) {
  p.age = age
}

func (p person) setName(name string) {
  p.name = name
}

func main() {
  pp := &person{name: "Bob", age: 42, gender: "Male"}
  pp.describe()
  // => Bob is 42 years old
  pp.setAge(45)
  fmt.Println(pp.age)
  //=> 45
  pp.setName("Hari")
  fmt.Println(pp.name)
  //=> Bob
}

从上面的例子中可以看到, 现在可以使用点运算符 调用该方法,就像作为 pp.describe 这样。请注意,返回值是指针类型。使用指针,我们传递对值的引用,因此如果我们对方法进行任何更改,它将反映在返回值 pp 中。指针类型的返回值也不会创建对象的新副本,从而节省了内存。
请注意,在上面的示例中,age 的值已更改,而 name 的值不会改变。因为方法 setName 是返回值是值类型,而 setAge 方法的返回值是类型指针。

接口

Go 的接口是一系列方法的集合。接口有助于将类型的属性组合在一起。下面,我们以接口 animal 为例:

type animal interface {
  description() string
}

这里的 animal 是一个接口。现在,我们用两个不同的实例来实现 animal 这个接口:


package main

import (
  "fmt"
)

type animal interface {
  description() string
}

type cat struct {
  Type  string
  Sound string
}

type snake struct {
  Type      string
  Poisonous bool
}

func (s snake) description() string {
  return fmt.Sprintf("Poisonous: %v", s.Poisonous)
}

func (c cat) description() string {
  return fmt.Sprintf("Sound: %v", c.Sound)
}

func main() {
  var a animal
  a = snake{Poisonous: true}
  fmt.Println(a.description())
  a = cat{Sound: "Meow!!!"}
  fmt.Println(a.description())
}

//=> Poisonous: true
//=> Sound: Meow!!!

在 main 函数中, 我们创建了一个 animal 接口类型的变量 a。我们为 animal 接口指定了 snake 和 cat 两个实例对象,并使用 Println 方法打印 a.description 。

我们所有用 go 语言写的代码都是在包含在对应的包中。 main 包是程序执行的入口。Go 中有很多内置包。 我们使用的一个最常见的包是 fmt 包

「Go 的包主要是用来进行大规模编程,并且可以将大型项目分成更小的部分。」 --- Robert Griesemer

包的安装

go get <package-url-github>
// 例子
go get [github.com/satori/go.uuid](https://github.com/satori/go.uuid)

我们安装的包保存在环境变量 env 的 GOPATH 目录下,这是我们的工作目录。 你可以通过我们的工作目录 cd $GOPATH/pkg 中的 pkg 文件夹查看到下载的包。

创建自定义包

我们从创建 custom_package 文件夹开始:

> mkdir custom_package
> cd custom_package

要创建自定义包,首先我们需要创建一个和包名一样的文件夹。假设我们要创建一个 person 包,那么我们得在 custom_package 文件夹里创建一个名为 person 的文件夹。

> mkdir person
> cd person

现在我们在该文件夹中,创建一个 person.go 文件。

package person
func Description(name string) string {
  return "The person name is: " + name
}
func secretName(name string) string {
  return "Do not share"
}

我们现在需要安装这个包,这样它才可被引入和使用。我们安装一下:

> go install

现在,我们回到 custom_package 文件夹中,创建 main.go 文件。

package main
import(
  "custom_package/person"
  "fmt"
)
func main(){ 
  p := person.Description("Milap")
  fmt.Println(p)
}
// => The person name is: Milap

至此,我们已经可以引入创建的 person 包了,并且使用包中的 Description 方法。注意,我们在包中创建的 secretName 方法是无法被访问的。在 Go 语言中,方法名称为非大写字母开头的,即为私有方法。

包文档

Go 拥有内建的包文档支持功能。运行如下命令生成文档。

godoc person Description

它将会为我们的 person 包内部的 Description 函数生成文档。查看文档的话只需要使用如下命令启动一个 web 服务器就可以:

godoc -http=":8080"

现在去访问这个URL http://localhost:8080/pkg/ 然后你就可以看到我们刚创建的包文档了。

Go 中部分常见的内置包

fmt

fmt 包实现了格式化 I/O 的功能。我们可以使用这个包来打印到标准输出。

json

Go 中另外一个有用的常见的包就是 json 包,用来编码和解码 json 数据。 接下来,让我们举一个例子来编码和解码一个 json:

编码

package main

import (
  "fmt"
  "encoding/json"
)

func main(){
  mapA := map[string]int{"apple": 5, "lettuce": 7}
  mapB, _ := json.Marshal(mapA)
  fmt.Println(string(mapB))
}

解码

package main

import (
  "fmt"
  "encoding/json"
)

type response struct {
  PageNumber int `json:"page"`
  Fruits []string `json:"fruits"`
}

func main(){
  str := `{"page": 1, "fruits": ["apple", "peach"]}`
  res := response{}
  json.Unmarshal([]byte(str), &res)
  fmt.Println(res.PageNumber)
}
//=> 1

在使用 unmarshal 函数解码 json 字节时,第一个参数是 json 字节,第二个参数是我们希望 json 映射到的响应类型 struct 的地址。 请注意,json:"page" 将 page 的键映射到结构体中的 PageNumber 的键。

错误处理

错误是程序不希望出现的意外结果。假设我们正在对一个外部服务的 API 进行调用。 当然,API 调用可能会成功或者失败。当出现错的时候,Go 语言可以识别程序中的错误。 我们来看看这个例子:

resp, err := http.Get("http://example.com/")

这里的 API 调用返回的错误对象可能存在或者不存在。 我们可以检查错误是否为 nil 值,并相应地处理响应:

package main

import (
  "fmt"
  "net/http"
)

func main(){
  resp, err := http.Get("http://example.com/")
  if err != nil {
    fmt.Println(err)
    return
  }
  fmt.Println(resp)
}

从函数返回自定义错误

当我们写一个自己的函数时, 在有些情况下存在错误要处理,我们利用 error 对象返回这些错误:

func Increment(n int) (int, error) {
  if n < 0 {
    // 返回一个 error 对象
    return nil, errors.New("math: cannot process negative number")
  }
  return (n + 1), nil
}
func main() {
  num := 5

  if inc, err := Increment(num); err != nil {
    fmt.Printf("Failed Number: %v, error message: %v", num, err)
  }else {
    fmt.Printf("Incremented Number: %v", inc)
  }
}

在 Go 中内置的包或我们使用的外部的包都有一个错误处理机制。因为我们调用的任何函数都可能存在错误。而且这些错误永远不应该被忽略,并且总是在我们称之为函数的地方优雅地处理,就像我们在上面的例子中所做的那样。

Panic

panic 是在程序执行期间突然遇到,未经处理的异常。 在 Go 中,panc 不是处理程序中异常的理想方式。 建议使用 error 对象。 发生 panic 时,程序执行停止。 panic 之后要继续执行的程序就使用 defer。

Defer

Defer 总是在函数结束时执行。


//Go
package main

import "fmt"

func main() {
    f()
    fmt.Println("Returned normally from f.")
}

func f() {
    defer func() {
        if r := recover(); r != nil {
            fmt.Println("Recovered in f", r)
        }
    }()
    fmt.Println("Calling g.")
    g(0)
    fmt.Println("Returned normally from g.")
}

func g(i int) {
    if i > 3 {
        fmt.Println("Panicking!")
        panic(fmt.Sprintf("%v", i))
    }
    defer fmt.Println("Defer in g", i)
    fmt.Println("Printing in g", i)
    g(i + 1)
}

在上面的例子中,我们使用 panic()来执行程序。 正如你所注意到的一样,有一个延迟语句,它将使程序在程序执行结束时执行该行。 当我们需要在函数结束时执行某些操作时,也可以使用 Defer,例如关闭文件。

并发

Go 是建立在并发的基础上的。Go 中的并发可以通过轻量级线程的 Go routine 来实现。

Go routine

Go routine 是可以与另一个函数并行或并发的函数。 创建 Go routine 非常简单。 只需在函数前面添加关键字 Go,我们就可以使它并行执行。 Go routine 非常简单非常轻量级,因此我们可以创建数千个例程。 让我们看一个简单的例子:

package main
import (
  "fmt"
  "time"
)
func main() {
  go c()
  fmt.Println("I am main")
  time.Sleep(time.Second * 2)
}
func c() {
  time.Sleep(time.Second * 2)
  fmt.Println("I am concurrent")
}
//=> I am main
//=> I am concurrent

就像你在上面的示例中所看到的,函数 c 是一个 Go routine,它与 Go 程序的主线程并行执行。 有时我们希望在多个线程之间共享资源。 Go 不是将一个线程的变量与另一个线程共享,因为这会增加死锁和资源等待的可能性。 还有另一种在 Go routine 之间共享资源的方法:通过 Go 语言的通道。

通道

我们可以使用通道在两个 Go routine 之间传递数据。 在创建通道时,必须指定通道接收的数据类型。 让我们创建一个 string 类型的简单通道,如下所示:

c := make(chan string)

有了这个通道,我们可以发送 string 类型数据。 我们都可以在此通道中发送和接收数据:

package main

import "fmt"

func main(){
  c := make(chan string)
  go func(){ c <- "hello" }()
  msg := <-c
  fmt.Println(msg)
}
//=>"hello"

接收方通道将会一直等待发送方向通道发送数据。

单向通道

在某些情况下,我们希望 Go routine 通过通道接收数据但不发送数据,反之亦然。 为此,我们还可以创建单向通道。 让我们看一个简单的例子:

package main

import (
 "fmt"
)

func main() {
 ch := make(chan string)

 go sc(ch)
 fmt.Println(<-ch)
}

func sc(ch chan<- string) {
 ch <- "hello"
}

在上面的例子中,sc 是一个 Go routine,它只能向通道发送消息但不能接收消息。
使用 select 为 Go routine 处理多个通道
一个进程里面可能有多个通道正在等待。为此,我们可以使用 select 语句。 让我们看一个更清晰的例子:


package main

import (
 "fmt"
 "time"
)

func main() {
 c1 := make(chan string)
 c2 := make(chan string)
 go speed1(c1)
 go speed2(c2)
 fmt.Println("The first to arrive is:")
 select {
 case s1 := <-c1:
  fmt.Println(s1)
 case s2 := <-c2:
  fmt.Println(s2)
 }
}

func speed1(ch chan string) {
 time.Sleep(2 * time.Second)
 ch <- "speed 1"
}

func speed2(ch chan string) {
 time.Sleep(1 * time.Second)
 ch <- "speed 2"
}

在上面的示例中,main 方法正在等待读取 c1 和 c2 通道的数据。 使用 select case 语句打印出结果,消息会通过通道发送过来,会打印出先发送过来的消息。

缓冲通道

有些情况下,我们需要像一个通道发送多个数据。 你可以为此创建一个缓冲通道。使用缓冲通道, 在缓冲区满之前接受方不会收到任何消息。 让我们看一下这个例子:

package main

import "fmt"

func main(){
  ch := make(chan string, 2)
  ch <- "hello"
  ch <- "world"
  fmt.Println(<-ch)
}

恭喜你!!! 你现在对 Go 有了不错的认识。

不要止步于此,继续前进, 考虑一个小的应用程序并开始构建它吧!!!

相关文章
|
3月前
|
自然语言处理 搜索推荐 Go
goctl 技术系列 - Go 模板入门
goctl 技术系列 - Go 模板入门
|
5天前
|
Serverless Go
Go语言中的并发编程:从入门到精通
本文将深入探讨Go语言中并发编程的核心概念和实践,包括goroutine、channel以及sync包等。通过实例演示如何利用这些工具实现高效的并发处理,同时避免常见的陷阱和错误。
|
17天前
|
安全 Go 开发者
破译Go语言中的并发模式:从入门到精通
在这篇技术性文章中,我们将跳过常规的摘要模式,直接带你进入Go语言的并发世界。你将不会看到枯燥的介绍,而是一段代码的旅程,从Go的并发基础构建块(goroutine和channel)开始,到高级模式的实践应用,我们共同探索如何高效地使用Go来处理并发任务。准备好,让Go带你飞。
|
20天前
|
存储 安全 Go
Go语言切片:从入门到精通的深度探索###
本文深入浅出地剖析了Go语言中切片(Slice)这一核心概念,从其定义、内部结构、基本操作到高级特性与最佳实践,为读者提供了一个全面而深入的理解。通过对比数组,揭示切片的灵活性与高效性,并探讨其在并发编程中的应用优势。本文旨在帮助开发者更好地掌握切片,提升Go语言编程技能。 ###
|
1月前
|
安全 Java Go
【Golang入门】简介与基本语法学习
Golang语言入门教程,介绍了Go语言的简介、基本语法、程序结构、变量和常量、控制结构、函数、并发编程、接口和类型、导入包、作用域以及错误处理等关键概念,为初学者提供了一个全面的学习起点。
19 0
|
3月前
|
Shell Go
Go 语言Air 工具使用入门
在Go开发中,频繁的手动重启应用以加载新代码既耗时又低效。为此,我们引入了Air——一款专为Go项目设计的自动重载工具。Air通过监听文件变化,实现代码更改后的自动编译与运行,极大提升了开发效率。本文将指导你完成Air的安装与配置,包括如何启动Air、忽略临时文件以及理解其工作原理,让Go项目开发更加流畅高效。
|
3月前
|
测试技术 Go 开发者
掌握Golang测试:从入门到实践
【8月更文挑战第31天】
50 0
|
3月前
|
Unix Go
Go从入门到放弃之时间操作
Go从入门到放弃之时间操作
|
3月前
|
机器学习/深度学习 移动开发 Linux
Go从入门到放弃之文件操作
Go从入门到放弃之文件操作
|
3月前
|
Java Go PHP
Go从入门到放弃之错误处理
Go从入门到放弃之错误处理