Quick BI的SQL传参建模可以用在什么场景

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
智能商业分析 Quick BI,专业版 50license 1个月
简介:

作者:潘炎峰 更多内容详见数据中台官网 https://dp.alibaba.com
Quick B的SQL传参建模功能提供基于SQL的数据加工处理能力,减轻了IT支撑人员的工作量。在即席查询SQL中,我们用${物理字段:显示别名}来表示参数的占位符,配置完占位符后,就可以在查询控件中进行参数绑定。在Quick BI的SQL传参建模中,本质透传的是逻辑条件,执行过程中会将“${物理字段:显示别名}”替换为“物理字段 > 查询值 ” 或 “物理字段 = 查询值 ” 或 “物理字段 in (查询值A、查询值B、查询值C) ” 或 “物理字段>= 查询值A and物理字段<= 查询值B”。下面我们来看看,哪些场景会用到Quick B的SQL传参建模功能吧!

场景一:任意时间段内的用户购买行为分析

  1. 场景描述:在零售行业往往需要分析用户的活跃度和客户的忠诚度,那么通过分析任意时间段内用户购买频率是常用的分析思路。

  2. 基于SQL传参如何实现:

1) SQL建模,这个场景就是典型的二次聚合分析,而且任意时间段,需要作用到子查询中,SQL建模语句如下:
select
sum(case when buy_cnt = 1 then 1 else 0 end ) as buy_cut_1,
sum(case when buy_cnt = 2 then 1 else 0 end ) as buy_cut_2,
sum(case when buy_cnt >2 and buy_cnt<=5 then 1 else 0 end ) as buy_cut_2_5,
sum(case when buy_cnt >5 and buy_cnt<=10 then 1 else 0 end ) as buy_cut_5_10,
sum(case when buy_cnt >10 and buy_cnt<=20 then 1 else 0 end ) as buy_cut_10_20,
sum(case when buy_cnt >20 then 1 else 0 end ) as buy_cut_up_20
from
(SELECT a.customer_name,
count(a.order_id) as buy_cnt
from company_sales_record_copy a
WHERE ${a.report_date : date_test } /定义查询时间参数/
group by a.customer_name
) b
2) 参数设置,在Quick BI中SQL传参本质上传逻辑条件,SQL传参需要选择为“日期-年月日”,供查询控件中识别数据类型。
image

3) 点击“创建数据集”,构建“任意时间多次购买客户数”数据集
image

4) 仪表板配置,以交叉表配置为例。选择对应SQL传参建模数据集,拖拽选择需要展现的字段。如下所示:
image

5) 查询项绑定配置,选择SQL参数项作为查询条件项,设置查询项与图表组件的关联关系和筛选项展现形式。如下图所示:
image

6) 数据验证:点击查询进行数据验证和SQL准确性验证。Quick BI的SQL引擎根据查询条件配置和SQL传参建模进行参数绑定。如下图所示:
image

通过以上六步操作,就可以很好的实现SQL传参建模的全流程穿越,以此来支撑多次聚合的复杂分析场景。

场景二、销售库存类数据分析(SQL建模供参考)

1.场景描述:在零售行业分析任意时间段的库存和销量数据是比较常用的需求,通过该数据分析甄别某个商品近期销售情况和库存?针对这样的场景,如何构建Quick BI的SQL传参建模?
1) 数据样例,后台数据具体字段包括(统计日期、省份、城市、期初库存、进货量、出货量、期末库存等):
image

2) 需要实现结果说明,基于以上数据,假设需要分析20190801~20190820浙江杭州的销售库存数据,需要给出的结果为:(期初库存取汇总开始时间的期初库存值,期末库存取汇总结束时间的期末库存值,进货朗、出货量采用sum汇总),另外时间为筛选区间。
image

3) Quick BI中SQL建模语句如下(供参考):
SELECT QBI_T1.COL_2 AS '省份',
QBI_T1.COL_3 AS '城市',
sum( case when QBI_T1.COL_1 = start_date then QBI_T1.COL_4else 0 end) as '期初库存',
SUM(QBI_T1.COL_5) AS '进货量',
SUM(QBI_T1.COL_6) AS '出货量',
SUM(case when QBI_T1.COL_1 = end_date then QBI_T1.COL_7 else 0 end ) as '期末库存'
FROM quickbi_test.QBI_0808_1566542575222 AS QBI_T1 /每日库存销量表/
left join (
select min(a.COL_1) as start_date,
max(a.COL_1) as end_date
FROM quickbi_test.QBI_0808_1566542575222 AS a /每日库存销量表/
where ${a.COL_1:report_date} /查询项中绑定的SQL传参/
) b /获取待汇总的统计时间/
on (
QBI_T1.COL_1 >= start_date
and QBI_T1.COL_1 <= end_date
)
group by QBI_T1.COL_2,
QBI_T1.COL_3

阿里巴巴数据中台团队,致力于输出阿里云数据智能的最佳实践,助力每个企业建设自己的数据中台,进而共同实现新时代下的智能商业!
阿里巴巴数据中台解决方案,核心产品:
Dataphin,以阿里巴巴大数据核心方法论OneData为内核驱动,提供一站式数据构建与管理能力;
Quick BI,集阿里巴巴数据分析经验沉淀,提供一站式数据分析与展现能力;
Quick Audience,集阿里巴巴消费者洞察及营销经验,提供一站式人群圈选、洞察及营销投放能力,连接阿里巴巴商业,实现用户增长。
欢迎志同道合者一起成长!更多内容详见数据中台官网 https://dp.alibaba.com

相关实践学习
助力游戏运营数据分析
本体验通过多产品组合构建了游戏数据运营分析平台,提供全面的游戏运营指标分析功能,并有效的分析渠道效果。更加有效地掌握游戏运营状态,也可充分利用数据分析的结果改进产品体验,提高游戏收益。
Quick BI在业务数据分析中的实战应用
Quick BI 是一款专为云上用户和企业量身打造的新一代自助式智能BI服务平台,其简单易用的可视化操作和灵活高效的多维分析能力,让精细化数据洞察为商业决策保驾护航。为了帮助您更快的学习和上手产品,同时更好地感受QuickBI在业务数据分析实践中的高效价值,下面将以一个真实的数据分析案例为场景带您开启QuickBI产品之旅。场景:假设您是一家大型互联网新零售企业的数据分析师,您的经理刚刚拿到8月份的月度运营分析数据,他发现近期企业运营状况不佳,8月份毛利额环比前几个月下滑较大,三季度存在达标风险。因此将这个任务交给了您,根据订单信息和流量渠道信息等相关数据,分析企业8月份毛利额下滑的关键要素,并将其分享给团队,以便指导相关业务部门采取决策和行动,提高企业整体毛利额。 &nbsp;
目录
相关文章
|
8月前
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
YOLOv5改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)
356 0
|
2月前
|
BI
Quick BI V5.3 发布 | 面向场景“真需求”,解锁用户“新体验” !
V5.3 版本功能速递:面向场景“真需求”,解锁用户“新体验”。
102 7
|
4月前
|
存储 监控 算法
Hologres 在 BI 场景中的应用
【9月更文第1天】随着企业对实时数据分析的需求不断增加,传统的批处理方式已经无法满足现代业务决策的速度要求。Hologres,作为一款专为在线分析处理(OLAP)设计的实时数仓解决方案,提供了高性能的查询能力,能够支持大规模数据集的实时分析需求。本文将探讨 Hologres 在商业智能(BI)场景中的应用,包括如何集成 BI 工具以提供实时数据洞察,并加速决策过程。
88 3
|
8月前
|
数据可视化 数据挖掘 BI
Quick BI助力山东高速集团成功举办数字化应用场景创新大赛
Quick BI助力山东高速集团成功举办数字化应用场景创新大赛
303 0
|
移动开发 运维 监控
低代码开发云平台源码,支持多种企业应用场景,快速构建CRM、ERP、OA、BI、IoT、大数据应用程序
基于 moleculer 微服务架构开发,提供微服务的应用开发、配置管理、服务注册与发现、服务认证与授权、服务网关、服务监控、统一日志分析等,提供微服务应用的开发、部署、监控、运维等应用生命周期管理。
167 0
低代码开发云平台源码,支持多种企业应用场景,快速构建CRM、ERP、OA、BI、IoT、大数据应用程序
|
供应链 监控 Cloud Native
瓴羊Quick BI助力子不语实现全场景数据分析与决策
在中国跨境电商时尚服装类垂直领域,SHEIN与Temu 缠斗得“难解难分”,备受关注的SHEIN何时上市也是众人津津乐道的话题,但当“低调”的子不语集团(2420.hk)于2022年双十一在港交所主板上市以后,市场才意识到中国跨境电商又一巨头的出现。
313 0
瓴羊Quick BI助力子不语实现全场景数据分析与决策
|
监控 搜索推荐 数据可视化
Quick BI产品核心功能大图(五)移动端:让数据在更多业务场景中流通
将数据更好的融入日常工作中,一个重要的前提条件就是多端多渠道的数据触达和办公协同能力。 Quick BI凭借移动端交互体验,帮助用户随时随地便捷查看报表,并通过在线协同方式,追踪策略的执行落地。让数据在企业中流动起来,真正将数据贯穿在业务决策的过程中。
401 0
Quick BI产品核心功能大图(五)移动端:让数据在更多业务场景中流通
|
新零售 监控 BI
应用Quick BI实现首购用户和用户首购的三种运营场景监控
首购用户和用户首购是互联网公司运营中最简单、最常遇到、也最容易混淆的两个概念。运营人员与BI经常在首购用户和用户首购上沟通不畅,信息不对称造成理解偏差,导致数据仓库模型或者BI仪表板一改再改。本文归纳总结了三种常见运营场景来解释首购用户与用户首购的区别,并讲述如何应用Quick BI制作满足三种场景的监控仪表板,希望能对运营和数据分析同行有所启发。
3013 0

热门文章

最新文章